Thursday, November 16 2017, 3:30pm Room 306, Statistics Building 1130 Kary Myers Los Alamos National Lab As computer simulations continue to grow in size and complexity, they present a particularly challenging class of big data problems. Many application areas are moving toward exascale computing systems, systems that perform a billion billion FLOPS (FLoating-point Operations Per Second). Simulations at this scale can generate output that exceeds both the storage capacity and the bandwidth available for transfer to storage, making post-processing and analysis challenging. One approach is to embed some analyses in the simulation while the simulation is running --- a strategy often called in situ analysis --- to reduce the need for transfer to storage. Another strategy is to save only a reduced set of time steps rather than the full simulation. Typically the selected time steps are evenly spaced, where the spacing can be defined by the budget for storage and transfer. Our work combines both of these ideas to introduce an online in situ method for identifying a reduced set of time steps of the simulation to save. Our approach significantly reduces the data transfer and storage requirements, and it provides improved fidelity to the simulation to facilitate post-processing and reconstruction. We illustrate the method using a computer simulation that supported NASA's 2009 Lunar Crater Observation and Sensing Satellite mission. http://www.lanl.gov/expertise/profiles/view/kary-myers