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Machine Learning and Artificial Intelligence
§ Machine Learning:

– Term coined by Arthur Samuel (IBM) in 1959
– ML gives computers the ability to learn without being explicitly programmed
– Study and construction of algorithms that can learn from data, identify features, recognize patterns, 

make predictions, and take actions
– A key pathway to AI

§ Artificial Intelligence: concerned with making computers behave like humans 
– Term coined by John McCarthy (MIT) around 1956 
– Study of “ intelligent agents” [or systems] that “perceive” the environment and take actions that 

maximize [probability] of success [to achieve] some goal
– Long history: formal reasoning in philosophy, logic, …
– Resurgence of AI techniques in the last decade: advances in computing power, computing and data 

architectures, sizes of training data, and theoretical understanding
– Deep Learning Neural Networks: At the core of recent advancements in AI, specifically for certain 

classes of ML tasks (Reinforcement L and Representation L)
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Machine Learning Tasks

• Data with “labels”
• Regression and classification

• Unsupervised Learning
• Data with no labels 
• Discover patterns or structure in the data (anomalies, clusters, lower-dimensional representation)

• Reinforcement Learning
• Experiment and exploit to make “optimal” decisions based on reward structure

• Others
• Semi-supervised, Positive-Unlabeled Learning, …
• Representation Learning
• Transfer Learning
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Supervised Learning: Statistics vs ML paradigms
• Leo Breiman (2001) Statistical Modeling: The Two Cultures, Statistical Science

• Two paradigms: data model and algorithmic model 

• Traditional statistics
– Goal: “understand” the generative model
o Estimate model parameters and assess uncertainty
o Identify key drivers and input-output relationships
o Extensive tools and diagnostics developed over time
o Parametric models à easier to interpret  

• Machine Learning
– Goal: best predictive performance … generalization assessed on hold-out data

o Algorithmic approach and automation of model building
à variable selection, feature engineering, model training

o Large samples
o Not much focus on CI, hypothesis testing, …

– No intrinsic interest in the data generation process (even if there’s such a thing!) 

• For regulated industries and safety-critical applications:
– Model interpretability is important 14

sample
Population
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• Ensemble algorithms
– Random Forests (RFs)
– Gradient Boosting Machines (GBMs)

– eXtreme Boosting (XGBoost)
– Tree-based models 
– Piecewise constant within nodes

• Feedforward Neural Networks

Supervised ML Algorithms



Ensemble Algorithms

Improve performance by combining 
outputs of several individual algorithms 
(“weak learners”):

• Bagging  and Random Forest 

• Boosting

• Other ensemble approaches:
• Model Averaging 
• Majority Voting
• Stacking
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Random Forest
• Random Forest (Breiman 2001)

o Create multiple datasets by bootstrap sampling of rows
o Build deep trees for each dataset

à fit piecewise constant models
à each tree has small bias (deep) but large variance

o Average results across trees
à reduce variance and instability

• Bootstrap aggregating (bagging)
o Column sub-sampling

à reduce correlations across trees
• Hyper-parameters

• Tree depth
• Number of trees
• Row sampling ratio
• Colum sampling ratio
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Gradient Boosting Machine

Boosting
• AdaBoost

o Schapire (1990), Freund and S (1995)
• Gradient boosting 

o Breiman (1996), Friedman (2001) 
o Fit trees to residuals sequentially

• Updates in the direction of negative gradient
• Short trees à low variance, big bias
• Boosting reduces bias

• Hyper-parameters (same as RF)
• Tree depth
• Number of trees
• Learning rate
• Row sampling ratio
• Colum sampling ratio
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Feedforward Neural Networks (FFNN)
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• Mimic neuronal networks

• Activation function:   𝒈 𝒘𝑻𝒙
• Sigmoidal, Hyperbolic Tan, ReLU
• Connection to additive index models:
𝑓(𝒙) = 𝑔 𝑤"𝑥" + …+ 𝑤#𝑥#

• FFNN architecture
• Nodes (Neurons)
• Input, Output, and Hidden Layers
• All nodes connected with others in next layer

• Deep NNs
• Many layers
• CNN, RNN, LSTM, …
• BERT (Bidirectional Encoder Representations from 

Transformers)



Hyper-parameter Optimization
• Batch or non-sequential techniques

– Grid search
– Random Search
– Designed experiments

• Sequential Search
– Hyperband
– Sequential model-based global optimization techniques 
o Bayesian optimization with Gaussian Process
o Tree-structured Parzen estimator

• Can be time consuming with large number of hyper-parameters and datasets

• Need access to good computing environment
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Applications in Banking
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Areas:
• Credit Risk: Predicting losses – customers not 

repaying debts or loans: Mortgages, Auto-Loans, 
Student Loans, Credit cards, Small businesses, … 

• Credit Decisions: Activities related to loan
applications: credit scoring, marketing, collections, …

• Revenue and Transactions: Interest, servicing fees, 
deposits, withdrawals, electronic payments, etc.

• Financial Crimes: Fraud detection, Money laundering

• Fair Lending: Ensuring fair treatment of customers 

• Text and speech: Conversations, complaints, emails, 
voice messages, chat-bots for assisting customers and 
employees

Statistical Techniques
• Dimension reduction; clustering, anomaly detection
• Parametric modelling for regression and classification
• Semi- and non-parametric regression models
• Regularization: Lasso, ridge, …
• Survival analysis; Time series forecasting

New Focus:
• Account level data à very large datasets with 100’s of millions 

of observations and 1,000s of predictors
• Emphasis on “automated” feature engineering and model 

development
• Modeling new sources and types of data

ML/AI Techniques:
• Auto-encoders, GANs, …
• Ensemble Tree-Based Algorithms: RFs and GBMs
• Feedforward Neural Networks
• Deep NNs for Natural Language Processing and Time Series 

Data



Application to Home Mortgage: Modeling “In-Trouble” Loans
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Loan origination, current (snapshot) and prediction times

• One portfolio: ~ 5 million observations 

• Response: binary = loan is “in trouble” (multiple failures and connections to competing risks)

• 20+ predictors: credit history, type of loan, loan amount, loan age, loan-to-value ratios, interest rates at 
origination and current, loan payments up-to-date, etc. (origination and over time)

Modeling framework



Comparison of Predictive Performance: ROC and AUC on Test Data
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• ML with 22 predictors
• LR model: eight carefully selected variables 

o snapshot fico (credit history);
o ltv (loan-to-value ratio);
o ind_financial-crisis; 
o pred_unemp_rate; 
o two delinquency status variables; 
o horizon 

How typical is this “lift” in our applications?



Natural Language Processing (NLP)
• Methods, algorithms, and systems for analyzing “human language” data (text, speech, conversations)

– Very challenging …
• Interdisciplinary area that combines computer science, statistics, optimization, AI, linguistics, logic …

– Earlier version  à computational linguistics, speech recognition, …
• Evolution:

– Rule-based, statistical …now largely driven by deep neural networks
• Diverse applications

Machine Translation
Text 
Summarization

Text classification Sentiment Analysis

Chatbots
• Alexa and Siri-like
• Conversational AI

Natural Language   
Generation



General:
• Advent of “Big Data”

ü New sources of data: social media, sensor networks, intelligent systems, …
o Text, conversations, …

• Advances in computing and data storage technologies
ü Infrastructure for data collection, warehousing, transfer, and management
ü Efficient and scalable algorithms and associated technologies for analyzing large datasets
ü Open-source algorithms
ü Cloud storage and computing
à Democratization of Data Science

Specific:
• Availability of large datasets and fast algorithms

à flexible modeling … move away from restrictive parametric models
• SML algorithms:
Ø Improved predictive performance
Ø Semi-automated approach to feature engineering and model training à ideal for Big Data

• New data sources and computing technologies open up new opportunities
Ø Text, speech, images, …
Ø More timely information and decision making

Opportunities with ML
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ML: In Pursuit of Interpretability
• Major Challenge:

– Predictor -𝑓 𝑥 is implicitly defined, high-dimensional, and complex à hard to interpret results
– Not an issue if only goal is prediction: recommender systems, fraud detection, …
– Big issue for regulated industries and safety-critical applications
– Typically dual goals: good predictive performance and interpretability

• Main Approaches:
I. Post hoc: Techniques for interpreting results after fitting model

II. Fitting and using surrogate models to explain complex results
a) Born-again trees (piecewise constant) à Breiman
b) Locally additive tress à Hu, Chen, Nair (2022)

III. Inherently interpretable algorithms
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• Permutation based: Model agnostic
– Randomly permute the rows for variable (column) of interest 

while keeping everything else unchanged
– Compute the change in prediction performance as the 

measure of importance.

• Selected Others
– Tree-based importance metrics
o Importance of a variable 𝑥$ à total reduction of impurity 

at nodes where 𝑥$ is used for splitting
o For ensemble algorithms, average over all trees

– Global Shapley
o Based on Shapley decomposition (1953); Owen (2014)
o Model agnostic but computationally intractable

Global: Variable Importance

Home Mortgage-XGB

Y X1 X2 X3 X4 X5

2 1.5 0 4.5 10.2 3.0

4 2.7 1 5.3 8.7 4.2

8 3.3 1 7.2 19.3 17.6

3 1.9 0 3.3 7.8 21.2
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• Understand how fitted response varies as a function of one or 
more variables of interest

• One-dimensional Partial Dependence Plot (PDP)
– Variable of interest: 𝑥$
– Write the fitted model as -𝑓 𝑥 = -𝑓(𝑥$, 𝒙%$)
– Fix 𝑥$ at 𝑐; compute the average of -𝑓 over the entire data

𝑔$(𝑥$ = 𝑐) =
1
𝑁
3
&'"

(

-𝑓(𝑥$ = 𝑐, 𝑥%$,&)

– Plot 𝑔$(𝑥$) against 𝑥$ over a grid of values
– One-dimensional summary
– Interpretation: Effect of 𝑥$ averaged over other variables

Input-Output Relationships: 1-D Partial Dependence Plots

Home Mortgage
1-D PDP for forecast_LTV



• Questions of Interest:
1. How can we interpret the response surface locally at selected points of interest?

2. Given the predicted value at a point of interest -𝑓 𝒙∗ = -𝑓 𝑥"∗, … , 𝑥+∗ , what are the contributions of the 
different variables {𝑥", … 𝑥+} to the prediction?

• If fitted model is linear: -𝑓 𝒙 = 𝑏, + 𝑏"𝑥" + …𝑏+𝑥-, we can answer both questions using the regressions 
coefficients.

• Answer to 1: Model is linear à magnitudes and signs of regression coefficients provide explanation

• Answer to 2: Contribution of 𝒙𝒋∗ is 𝒃𝒋𝒙𝒋∗

• How to extend these interpretations to fitted models from complex ML  algorithms?

• LIME, SHAP, B-Shap, etc.

Local Explainability
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“Adverse” action explanation on declined decisions to customers

• 𝒙 = 𝑥", … , 𝑥+ 𝐾 −dimensional credit attribute 
• Use historical data 𝑦&, 𝒙& , 𝑖 = 1, …𝑛 to develop model for 

probability of default (PoD)
• Fitted model for PoD – 𝑝 𝒙
• Decision: 

– Accept application with 𝒙∗ if  𝑝 𝒙∗ ≤ 𝝉; 
– Decline otherwise

• Declined customers are entitled to an “explanation” by law
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• Problem formulation
o Take a reference point 𝒙/ in the “accept” region

o Compute the difference: 𝒑 𝒙𝑫 − 𝒑 𝒙𝑨

o Attribute the difference to the (important) predictors
o Better to do in terms of 𝑓 𝒙 = 𝑙𝑜𝑔𝑖𝑡 𝑝 𝒙
o Decompose 𝑓 𝒙𝑫 − 𝑓 𝒙𝑨 = 𝐸" 𝒙𝑫, 𝒙𝑨 + 𝐸2 𝒙𝑫, 𝒙𝑨 + … + 𝐸+ 𝒙𝑫, 𝒙𝑨

𝐸- 𝒙𝑫, 𝒙𝑨 is allocation to  (contribution by) 𝑘 −th predictor



General expression for AA with Baseline Shapley

[𝑓 𝒙𝑫 − 𝑓 𝒙𝑨 ] = 𝐸# +⋯+ 𝐸$,

𝐸! = 𝐸! 𝒙𝑫; 𝒙𝑨 = %
𝑺!⊆𝑲\{!}

𝑺𝒌 ! |𝑲| − 𝑺𝒌 !
|𝑲|! 𝑓 𝑥!+; 𝒙𝑺𝒌

𝑫 ; 𝒙𝑲\𝑺𝒌
𝑨 − 𝑓 𝑥!,; 𝒙𝑺𝒌

𝑫 ; 𝒙𝑲\𝑺𝒌
𝑨 .

• Application of Shapley concept (Shapley, 1951+)
– Adapted to global explanation in ML (Owen 2014; and others)
– Local explanation (Lundberg et al. 2018, others)
– Computationally intractable 

• Baseline Shapley (Sundararajan, M. and Najmi, A. (2020) – easier to compute

• Adaptation to Adverse Action (Nair et al. 2022)
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AA Explanation with Two Predictors

Linear model: 𝑓 𝒙 = 𝑏, + 𝑏"𝑥" +⋯+ 𝑏+𝑥+
𝑓 𝒙𝑫 − 𝑓 𝒙𝑨 = 𝑏" 𝑥"3 − 𝑥"/ + 𝑏2 𝑥23 − 𝑥2/ + …

GAM?

Interactions? 𝑓 𝒙 = 𝑏, + 𝑏"𝑥" + 𝑏2𝑥2 + 𝑏"2𝑥"𝑥2

𝑏" 𝑥"3 − 𝑥"/ + 𝑏2 𝑥23 − 𝑥2/ + 𝑏"2 𝑥"3𝑥23 − 𝑥"/𝑥2/

General: (Nair et al. 2022)

• 𝐸" =
"
2
𝐸"" + 𝐸"2 à

"
2

𝑓 𝑥"3, 𝑥23 − 𝑓 𝑥"/, 𝑥23 + 𝑓 𝑥"3, 𝑥2/ − 𝑓 𝑥"/, 𝑥2/

• 𝐸2 =
"
2
𝐸2" + 𝐸22 à

"
2

𝑓 𝑥"3, 𝑥23 − 𝑓 𝑥"3, 𝑥2/ + 𝑓 𝑥"/, 𝑥23 − 𝑓 𝑥"/, 𝑥2/
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Issues

25

• Most post-hoc tools for studying input-output relationships are lower-dimensional summaries
• Limited in ability to characterize complex models with local behavior
• Need better visualization tools in high-dimensions
• How to automate visualization à spirit of ML and AI.

• ML algorithms: Function-fitting vs modeling
• High-dimensional ML – can do very good function fitting with large samples
• What is a role of a model?



Correlation can create havoc!
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-𝑓 𝒙 = -𝑓 𝒙𝒋, 𝒙%𝒋 is the fitted model 

-𝑓#3,$ 𝑧 =
1
𝑁
3
&'"

(

-𝑓(𝑥$ = 𝑧, 𝒙%𝒋,𝒊)

When predictors are highly correlated:
Performance of VI analyses and PDPs?
• Extrapolation
• Poor model fit outside data envelope
• Alternatives: ALE (Apley and Zhu, 2020), ATDEV (Liu et al. 2018)

Bigger issue: Model identifiability
𝑓 𝑥", 𝑥2 = 𝛽"𝑥" + 𝛽2𝑥2 + 𝛽"2 𝑥"𝑥2 à 𝑔(𝑥") ?

• Main effect à masked by quadratic term from interaction
• Different ML algorithms can capture the masking differently
• VI analysis à permute correlated variables jointly

These are known problems to statisticians à that’s why there has been a lot of model diagnostics!
But the view in ML is to throw as many predictors as possible into the mix and automate model building.
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Inherently interpretable models
•Key characteristics

§ Parsimony à easier to interpret
üSparsity à few active effects or complicated relationships
üLow-order interactions à more than two hard to understand

§ Analytic expression à use regression coefficients for interpretation

•Goals and challenges of complex ML models
– Extract as much predictive performance as possible
– No emphasis on interpretation à lots of variables, complex relationships and interactions
– No analytic expressions à rely on low dimensional summaries à don’t present the full picture

•Emerging view: 
– Low-order functional (nonparametric) models are adequate in most of our applications 

à tabular data in banking
– Directly interpretable
– Reversing emphasis on complex modeling 

à trade-off: small improvements in predictive performance vs interpretation
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• Functional ANOVA Models: 

𝑓 𝒙 = 𝑔, +3
$

𝑔$ 𝑥$ +3
$5-

𝑔$- 𝑥$, 𝑥- + 3
$5-56

𝑔$-6 𝑥$, 𝑥-, 𝑥6 +⋯

– FANOVA models with low-order interactions are adequate for many of our applications
– Focus on models with functional main effects and second order interactions
– Stone (1994); Wahba and her students (see Gu, 2013) 

à use splines to estimate low-order functional effects non-parametrically
– Not scalable to large numbers of observations and predictors
– Recent approaches 

à use ML architecture and optimization algorithms to develop fast algorithms

Examples of “Low Order” Models
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𝑓(𝒙) = 𝑔, +3
$

𝑔$ 𝑥$ +3
$5-

𝑔$- 𝑥$, 𝑥-

• Model made up of mean 𝑔,, main effects 𝒈𝒋 𝒙𝒋 , two-factor interactions 𝒈𝒋𝒌 𝒙𝒋, 𝒙𝒌
• Interpretability

– Fitted model is additive, effects are enforced to be orthogonal
– Components can be easily visualized and interpreted directly
– Regularization or other techniques used to keep model parsimonious

• Two state-of-the-art ML algorithms for fitting these models: 
– Explainable Boosting Machine (Nori, et al. 2019) à boosted tress
– GAMI Neural Networks (Yang, Zhang and Sudjianto, 2021) à specialized NNs
– GAMI-Tree (Hu, Chen, and Nair, 2022) à specialized boosted model-based trees

FANOVA framework

Nori, Jenkins, Koch and Caruana (2019). InterpretML: A Unified Framework for Machine Learning Interpretability. arXiv: 1909.09223
Yang, Zhang and Sudjianto (2021, Pattern Recognition): GAMI-Net. arXiv: 2003.07132

https://arxiv.org/abs/1909.09223
https://arxiv.org/abs/2003.07132
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• EBM – Boosted-tree algorithm by Microsoft group (Lou, et al. 2013)

𝑓 𝒙 = 𝑔# +*𝑔$ 𝑥$ +*𝑔$%(𝑥$ , 𝑥%)

– Microsoft InterpretML (Nori, et al. 2019)
– fast implementation in C++ and Python

• Multi-stage model training : 

– 1: fit functional main effects non-parametrically 

– Shallow tree boosting with splits on the same variable for capturing a non-linear 
main effect

– 2: fit pairwise interactions on residuals:

a. Detect interactions using FAST algorithm 
b. For each interaction (𝑥$ , 𝑥%), fit function 𝑔$%(𝑥$ , 𝑥%) non-parametrically using a 

tree with depth two:  1 cut in 𝑥$ and 2 cuts in 𝑥%, or 2 cuts in 𝑥$ and 1 cut in 𝑥%
(pick the better one)

c. Iteratively fit all the detected interactions until convergence 

Explainable Boosting Machine

Lou, Caruana, Gehrke and Hooker (2013). Accurate Intelligible Models with Pairwise Interactions. Microsoft Research

https://www.microsoft.com/en-us/research/publication/accurate-intelligible-models-pairwise-interactions/
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Explainable boosting machine: Example

Friedman1 simulated data: 

• sklearn.datasets.make_friedman1
n_samples=10000, n_features=10, and 
noise=0.1. 

• Multivariate independent features 𝒙
uniformly distributed on [0,1]

• Continuous response generated by 
𝑦 𝒙 = 10sin 𝜋𝑥,𝑥" + 20 𝑥2 − 0.5 2

+20𝑥8 + 10𝑥9 + 𝜖

depending only 𝒙𝟎~𝒙𝟒

EBM Output with Test RMSE = 0.0284 and R2 = 97.39%  

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman1.html
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GAMI-Net
• NN-based algorithm for non-parametrically fitting

𝑓 𝒙 = 𝑔, +3𝑔$ 𝑥$ +3𝑔$-(𝑥$, 𝑥-)

• Multi-stage training algorithm: 

1: estimate {𝑔$ 𝑥$ } à train main-effect subnets and prune small 
main effects 

2: estimate {𝑔$%(𝑥$ , 𝑥%)}à compute  residuals from main effects and 
train pairwise interaction nets 

§ Select candidate interactions using heredity constraint 
§ Evaluate their scores (by FAST) and select top-K interactions;
§ Train the selected two-way interaction subnets;
§ Prune small interactions

3: retrain main effects and interactions simultaneously

Yang, Zhang and Sudjianto (2021, Pattern Recognition): GAMI-Net. arXiv: 2003.07132

https://arxiv.org/abs/2003.07132
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• Each effect importance (before normalization) is given by

𝐷 ℎ$ =
1

𝑛 − 1
3
&'"

<

𝑔$2(𝑥&$) , 𝐷 𝑓$- =
1

𝑛 − 1
3
&'"

<

𝑔$-2 (𝑥&$, 𝑥&-)

• For prediction at 𝒙&, the local feature importance is given by

𝜙$ 𝑥&$ = 𝑔$ 𝑥&$ +
1
2
3
$=-

𝑔$-(𝑥&$, 𝑥&-)

• For GAMI-Net (or EBM), the global feature importance is given by 

FI 𝑥! =
1

𝑛 − 14
"#$

%

𝜙! 𝑥"! − 𝜙!
&

• The effects can be visualized by a line plot (for main effect) or heatmap (for pairwise interaction).

Diagnostics: Effect importance and feature importance
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GAMI-Net: Example 

Friedman1 data:  
𝑦 𝒙 = 10sin 𝜋𝑥'𝑥$ + 20 𝑥& − 0.5 & + 20𝑥( + 10𝑥) + 𝜖

Same data generated as for EBM example.

GAMI-Net Output with Test RMSE = 0.0058 and R2 = 99.89%  
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Comparisons: Bike Sharing Data

Bike sharing data:

• Another popular benchmark UCI dataset 
consisting of hourly count of rental bikes 
between years 2011 and 2012 in Capital 

bikeshare system.  

• Sample size: 17379

• The features include weather conditions, 
precipitation, day of week, season, hour 
of the day, etc. 

• The response is count of total rental bikes.

EBM Output with test RMSE = 0.0825 and R2 = 80.58%

GAMI-Net Output with test RMSE = 0.0595 and R2 = 89.89%

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
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• Additive Index Models: 
𝑓 𝒙 = 𝑔" 𝜷𝟏𝑻𝒙 + 𝑔2 𝜷𝟐𝑻𝒙 + …+ 𝑔+ 𝜷𝑲𝑻𝒙

– Generalization of GAMs: 
𝑓 𝒙 = 𝑔" 𝑥" + 𝑔2 𝑥2 + …+ 𝑔# 𝑥#

– Incorporates certain types of interactions
– Projection pursuit regression (Friedman and Stuetzle, 

1981)
– Need for scalable algorithms with large datasets and many 

predictors

– Use specialized neural network architecture and 
associated fast algorithms
– eXplainable Neural Networks (xNNs) à Vaughan, 

Sudjianto, … Nair (2020)

Another example of “Low Order” Models:



•Advent of “Big Data” and advances in computing à many opportunities
– Large datasets à flexible models à better performance 
– Automated feature engineering and selection
– Exploit information in new sources of data (text)

•Challenges
– Computational
– Overfitting, model robustness, generalizability, …
– Incorporating shape constraints and subject matter knowledge
– Interpretability
– Fairness and Bias

Summary
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