Machine Learning:
 Overview and Applications

Vijay Nair

Outline

- Machine Learning: Brief overview
- Supervised ML :
- Algorithms
-Applications in Banking
- Opportunities
- Challenges
- Interpretability

References

- Hu, L., et al. (2021) Supervised Machine Learning Techniques: An Overview with Applications to Banking, International Statistical Review, Volume 89 (Issue3) pages, p.573-604.
- Breiman, L. (2001a). Random Forests. Machine Learning, 45, 5-32.
- Breiman, L. (2001b). Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author). Statistical Science, 16, 199-231.
- Friedman, J. (2001). Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29, 1189-1232.
- Chen, T., \& Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco.
- Goodfellow, I., Bengio, Y., \& Courville, A. (2015). Deep Learning. Cambridge, MA: MIT Press.
- Lundberg, S. M., \& Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, (pp. 4765-4774).
- Ribeiro, M. T., Singh, S., \& Guestrin, C. (2016). " Why should i trust you?" Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, (pp. 1135-1144).
- Song, E., Nelson, B. L., \& Staum, J. (2016). Shapley Effects for Global Sensitivity Analysis: Theory and Computation. J. Uncertainty Quantification, 4(1), 1060-1083.

Machine Learning and Artificial Intelligence

- Machine Learning:

- Term coined by Arthur Samuel (IBM) in 1959
- ML gives computers the ability to learn without being explicitly programmed
- Study and construction of algorithms that can learn from data, identify features, recognize patterns, make predictions, and take actions
- A key pathway to AI
- Artificial Intelligence: concerned with making computers behave like humans
- Term coined by John McCarthy (MIT) around 1956
- Study of "intelligent agents" [or systems] that "perceive" the environment and take actions that maximize [probability] of success [to achieve] some goal
- Long history: formal reasoning in philosophy, logic, ...
- Resurgence of Al techniques in the last decade: advances in computing power, computing and data architectures, sizes of training data, and theoretical understanding
- Deep Learning Neural Networks: At the core of recent advancements in AI, specifically for certain classes of ML tasks (Reinforcement L and Representation L)

Machine Learning Tasks

- Supervised Learning
- Data with "labels"
- Regression and classification
- Unsupervised Learning
- Data with no labels
- Discover patterns or structure in the data (anomalies, clusters, lower-dimensional representation)
- Reinforcement Learning
- Experiment and exploit to make "optimal" decisions based on reward structure
- Others
- Semi-supervised, Positive-Unlabeled Learning, ...
- Representation Learning
- Transfer Learning

Supervised Learning: Statistics vs ML paradigms

- Leo Breiman (2001) Statistical Modeling: The Two Cultures, Statistical Science
- Two paradigms: data model and algorithmic model
- Traditional statistics
- Goal: "understand" the generative model

- Estimate model parameters and assess uncertainty
- Identify key drivers and input-output relationships
- Extensive tools and diagnostics developed over time
- Parametric models \rightarrow easier to interpret
- Machine Learning
- Goal: best predictive performance ... generalization assessed on hold-out data
- Algorithmic approach and automation of model building
\rightarrow variable selection, feature engineering, model training
- Large samples
- Not much focus on Cl , hypothesis testing, ...
- No intrinsic interest in the data generation process (even if there's such a thing!)
- For regulated industries and safety-critical applications:
- Model interpretability is important

Supervised ML Algorithms

- Ensemble algorithms

- Random Forests (RFs)
- Gradient Boosting Machines (GBMs) - eXtreme Boosting (XGBoost)
- Tree-based models
- Piecewise constant within nodes
- Feedforward Neural Networks

Ensemble Algorithms

Improve performance by combining
outputs of several individual algorithms ("weak learners"):

- Bagging and Random Forest
- Boosting
- Other ensemble approaches:
- Model Averaging
- Majority Voting
- Stacking

Random Forest

- Random Forest (Breiman 2001)
- Create multiple datasets by bootstrap sampling of rows
- Build deep trees for each dataset
\rightarrow fit piecewise constant models
\rightarrow each tree has small bias (deep) but large variance
- Average results across trees
\rightarrow reduce variance and instability
- Bootstrap aggregating (bagging)
- Column sub-sampling
\rightarrow reduce correlations across trees
- Hyper-parameters
- Tree depth
- Number of trees
- Row sampling ratio
- Colum sampling ratio

Gradient Boosting Machine

Feedforward Neural Networks (FFNN)

- Mimic neuronal networks

Activation function: $\boldsymbol{g}\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)$

- Sigmoidal, Hyperbolic Tan, ReLU
- Connection to additive index models:

$$
f(\boldsymbol{x})=g\left(w_{1} x_{1}+\ldots+w_{P} x_{P}\right)
$$

- FFNN architecture
- Nodes (Neurons)
- Input, Output, and Hidden Layers
- All nodes connected with others in next layer
- Deep NNs
- Many layers
- CNN, RNN, LSTM, ...
- BERT (Bidirectional Encoder Representations from Transformers)

Hyper-parameter Optimization

- Batch or non-sequential techniques
- Grid search
- Random Search
- Designed experiments

- Sequential Search

- Hyperband
- Sequential model-based global optimization techniques
- Bayesian optimization with Gaussian Process
- Tree-structured Parzen estimator
- Can be time consuming with large number of hyper-parameters and datasets
- Need access to good computing environment

Applications in Banking

Areas:

- Credit Risk: Predicting losses - customers not repaying debts or loans: Mortgages, Auto-Loans, Student Loans, Credit cards, Small businesses, ...
- Credit Decisions: Activities related to loan applications: credit scoring, marketing, collections, ...
- Revenue and Transactions: Interest, servicing fees, deposits, withdrawals, electronic payments, etc.
- Financial Crimes: Fraud detection, Money laundering
- Fair Lending: Ensuring fair treatment of customers
- Text and speech: Conversations, complaints, emails, voice messages, chat-bots for assisting customers and employees

Statistical Techniques

- Dimension reduction; clustering, anomaly detection
- Parametric modelling for regression and classification
- Semi- and non-parametric regression models
- Regularization: Lasso, ridge,
- Survival analysis; Time series forecasting

New Focus:

- Account level data \rightarrow very large datasets with 100 's of millions of observations and 1,000 s of predictors
- Emphasis on "automated" feature engineering and model development
- Modeling new sources and types of data

ML/AI Techniques:

- Auto-encoders, GANs, ...
- Ensemble Tree-Based Algorithms: RFs and GBMs
- Feedforward Neural Networks
- Deep NNs for Natural Language Processing and Time Series Data

Application to Home Mortgage: Modeling "In-Trouble" Loans

- One portfolio: ~ 5 million observations
- Response: binary = loan is "in trouble" (multiple failures and connections to competing risks)
- 20+ predictors: credit history, type of loan, loan amount, loan age, loan-to-value ratios, interest rates at origination and current, loan payments up-to-date, etc. (origination and over time)

Modeling framework

Loan origination, current (snapshot) and prediction times

Comparison of Predictive Performance: ROC and AUC on Test Data

- ML with 22 predictors
- LR model: eight carefully selected variables
- snapshot fico (credit history);
- Itv (loan-to-value ratio);
- ind_financial-crisis;
- pred_unemp_rate;
- two delinquency status variables;
- horizon

How typical is this "lift" in our applications?

Natural Language Processing (NLP)

- Methods, algorithms, and systems for analyzing "human language" data (text, speech, conversations) - Very challenging ...
- Interdisciplinary area that combines computer science, statistics, optimization, AI, linguistics, logic ...
- Earlier version \rightarrow computational linguistics, speech recognition, ...
- Evolution:
- Rule-based, statistical ...now largely driven by deep neural networks
- Diverse applications

Chatbots
 - Alexa and Siri-like
 - Conversational AI

Natural Language
Generation

Sentiment Analysis

Positive

Neutral

Negative

Opportunities with ML

General:

- Advent of "Big Data"
\checkmark New sources of data: social media, sensor networks, intelligent systems, ...
- Text, conversations, ...
- Advances in computing and data storage technologies
\checkmark Infrastructure for data collection, warehousing, transfer, and management
\checkmark Efficient and scalable algorithms and associated technologies for analyzing large datasets
\checkmark Open-source algorithms
\checkmark Cloud storage and computing
\rightarrow Democratization of Data Science

Specific:

- Availability of large datasets and fast algorithms
\rightarrow flexible modeling ... move away from restrictive parametric models
- SML algorithms:
$>$ Improved predictive performance
$>$ Semi-automated approach to feature engineering and model training \rightarrow ideal for Big Data
- New data sources and computing technologies open up new opportunities
> Text, speech, images, ..
$>$ More timely information and decision making

ML: In Pursuit of Interpretability

- Major Challenge:
- Predictor $\hat{f}(x)$ is implicitly defined, high-dimensional, and complex \rightarrow hard to interpret results
- Not an issue if only goal is prediction: recommender systems, fraud detection, ...
- Big issue for regulated industries and safety-critical applications
- Typically dual goals: good predictive performance and interpretability
- Main Approaches:
I. Post hoc: Techniques for interpreting results after fitting model
II. Fitting and using surrogate models to explain complex results
a) Born-again trees (piecewise constant) \rightarrow Breiman
b) Locally additive tress $\rightarrow \mathrm{Hu}$, Chen, Nair (2022)
III. Inherently interpretable algorithms

Global: Variable Importance

- Permutation based: Model agnostic

- Randomly permute the rows for variable (column) of interest while keeping everything else unchanged

Y	X 1	X 2	X 3	X 4	X 5
2	1.5	0	4.5	10.2	3.0
4	2.7	1	5.3	8.7	4.2
8	3.3	1	7.2	19.3	17.6
3	1.9	0	3.3	7.8	21.2

- Compute the change in prediction performance as the measure of importance.

- Selected Others

- Tree-based importance metrics
- Importance of a variable $x_{j} \rightarrow$ total reduction of impurity at nodes where x_{j} is used for splitting
- For ensemble algorithms, average over all trees
- Global Shapley
- Based on Shapley decomposition (1953); Owen (2014)
- Model agnostic but computationally intractable

Home Mortgage-XGB

Input-Output Relationships: 1-D Partial Dependence Plots

- Understand how fitted response varies as a function of one or more variables of interest
- One-dimensional Partial Dependence Plot (PDP)
- Variable of interest: x_{j}
- Write the fitted model as $\hat{f}(x)=\hat{f}\left(x_{j}, x_{-j}\right)$
- Fix x_{j} at c; compute the average of \hat{f} over the entire data

$$
g_{j}\left(x_{j}=c\right)=\frac{1}{N} \sum_{i=1}^{N} \hat{f}\left(x_{j}=c, x_{-j, i}\right)
$$

- Plot $g_{j}\left(x_{j}\right)$ against x_{j} over a grid of values
- One-dimensional summary
- Interpretation: Effect of x_{j} averaged over other variables

Local Explainability

- Questions of Interest:

1. How can we interpret the response surface locally at selected points of interest?
2. Given the predicted value at a point of interest $\hat{f}\left(\boldsymbol{x}^{*}\right)=\hat{f}\left(x_{1}^{*}, \ldots, x_{K}^{*}\right)$, what are the contributions of the different variables $\left\{x_{1}, \ldots x_{K}\right\}$ to the prediction?

- If fitted model is linear: $\hat{f}(\boldsymbol{x})=b_{0}+b_{1} x_{1}+\ldots b_{K} x_{k}$, we can answer both questions using the regressions coefficients.
- Answer to 1: Model is linear \rightarrow magnitudes and signs of regression coefficients provide explanation
- Answer to 2: Contribution of $\boldsymbol{x}_{\boldsymbol{j}}^{*}$ is $\boldsymbol{b}_{\boldsymbol{j}} \boldsymbol{x}_{\boldsymbol{j}}^{*}$
- How to extend these interpretations to fitted models from complex ML algorithms?
- LIME, SHAP, B-Shap, etc.

"Adverse" action explanation on declined decisions to customers

- $\boldsymbol{x}=\left(x_{1}, \ldots, x_{K}\right) K$-dimensional credit attribute
- Use historical data $\left\{y_{i}, \boldsymbol{x}_{i}\right\}, i=1, \ldots n \quad$ to develop model for probability of default (PoD)
- Fitted model for PoD - $p(\boldsymbol{x})$
- Decision:
- Accept application with \boldsymbol{x}^{*} if $p\left(\boldsymbol{x}^{*}\right) \leq \boldsymbol{\tau}$;
- Decline otherwise

x_{1}
- Declined customers are entitled to an "explanation" by law
- Problem formulation
- Take a reference point \boldsymbol{x}^{A} in the "accept" region
- Compute the difference: $\left[\boldsymbol{p}\left(\boldsymbol{x}^{\boldsymbol{D}}\right)-\boldsymbol{p}\left(\boldsymbol{x}^{\boldsymbol{A}}\right)\right]$
- Attribute the difference to the (important) predictors
- Better to do in terms of $f(\boldsymbol{x})=\operatorname{logit} p(\boldsymbol{x})$
- Decompose $\left[f\left(x^{D}\right)-f\left(x^{A}\right)\right]=E_{1}\left(x^{D}, x^{A}\right)+E_{2}\left(x^{D}, x^{A}\right)+\ldots+E_{K}\left(x^{D}, x^{A}\right)$

22 $E_{k}\left(x^{D}, x^{A}\right)$ is allocation to (contribution by) k-th predictor

General expression for AA with Baseline Shapley

$$
\left[f\left(x^{D}\right)-f\left(x^{A}\right)\right]=E_{1}+\cdots+E_{K}
$$

$$
E_{k}=E_{k}\left(x^{D} ; x^{A}\right)=\sum_{S_{k} \leq K \backslash\{k\}} \frac{\left|S_{k}\right|!\left(|K|-\left|S_{k}\right|\right)!}{|K|!}\left(f\left(x_{k}^{D} ; x_{S_{k}}^{D} ; x_{K \backslash S_{k}}^{A}\right)-f\left(x_{k}^{A} ; x_{S_{k}}^{D} ; x_{K \backslash S_{k}}^{A}\right)\right) .
$$

- Application of Shapley concept (Shapley, 1951+)
- Adapted to global explanation in ML (Owen 2014; and others)
- Local explanation (Lundberg et al. 2018, others)
- Computationally intractable
- Baseline Shapley (Sundararajan, M. and Najmi, A. (2020) - easier to compute
- Adaptation to Adverse Action (Nair et al. 2022)

AA Explanation with Two Predictors

Linear model: $f(\boldsymbol{x})=b_{0}+b_{1} x_{1}+\cdots+b_{K} x_{K}$
$\left[f\left(x^{\boldsymbol{D}}\right)-f\left(\boldsymbol{x}^{A}\right)\right]=b_{1}\left(x_{1}^{D}-x_{1}^{A}\right)+b_{2}\left(x_{2}^{D}-x_{2}^{A}\right)+\ldots$
GAM?

Interactions? $f(\boldsymbol{x})=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{12} x_{1} x_{2}$
$b_{1}\left(x_{1}^{D}-x_{1}^{A}\right)+b_{2}\left(x_{2}^{D}-x_{2}^{A}\right)+b_{12}\left(x_{1}^{D} x_{2}^{D}-x_{1}^{A} x_{2}^{A}\right)$

General: (Nair et al. 2022)

- $E_{1}=\frac{1}{2}\left(E_{11}+E_{12}\right) \rightarrow \frac{1}{2}\left\{\left[f\left(x_{1}^{D}, x_{2}^{D}\right)-f\left(x_{1}^{A}, x_{2}^{D}\right)\right]+\left[f\left(x_{1}^{D}, x_{2}^{A}\right)-f\left(x_{1}^{A}, x_{2}^{A}\right)\right]\right\}$
- $E_{2}=\frac{1}{2}\left(E_{21}+E_{22}\right) \rightarrow \frac{1}{2}\left\{\left[f\left(x_{1}^{D}, x_{2}^{D}\right)-f\left(x_{1}^{D}, x_{2}^{A}\right)\right]+\left[f\left(x_{1}^{A}, x_{2}^{D}\right)-f\left(x_{1}^{A}, x_{2}^{A}\right)\right]\right\}$

Issues

- Most post-hoc tools for studying input-output relationships are lower-dimensional summaries
- Limited in ability to characterize complex models with local behavior
- Need better visualization tools in high-dimensions
- How to automate visualization \rightarrow spirit of ML and AI.
- ML algorithms: Function-fitting vs modeling
- High-dimensional ML - can do very good function fitting with large samples
- What is a role of a model?

Correlation can create havoc!

$$
\begin{aligned}
& \hat{f}(\boldsymbol{x})=\hat{f}\left(\boldsymbol{x}_{\boldsymbol{j}}, \boldsymbol{x}_{-\boldsymbol{j}}\right) \text { is the fitted model } \\
& \qquad \hat{f}_{P D, j}(z)=\frac{1}{N} \sum_{i=1}^{N} \hat{f}\left(x_{j}=z, \boldsymbol{x}_{-j, i}\right)
\end{aligned}
$$

When predictors are highly correlated:
Performance of VI analyses and PDPs?

- Extrapolation
- Poor model fit outside data envelope
- Alternatives: ALE (Apley and Zhu, 2020), ATDEV (Liu et al. 2018)

Bigger issue: Model identifiability

$$
f\left(x_{1}, x_{2}\right)=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2} \rightarrow g\left(x_{1}\right) ?
$$

- Main effect \rightarrow masked by quadratic term from interaction
- Different ML algorithms can capture the masking differently
- VI analysis \rightarrow permute correlated variables jointly

These are known problems to statisticians \rightarrow that's why there has been a lot of model diagnostics! But the view in ML is to throw as many predictors as possible into the mix and automate model building.

Inherently interpretable models

- Key characteristics

- Parsimony \rightarrow easier to interpret
\checkmark Sparsity \rightarrow few active effects or complicated relationships
\checkmark Low-order interactions \rightarrow more than two hard to understand
- Analytic expression \rightarrow use regression coefficients for interpretation
- Goals and challenges of complex ML models
- Extract as much predictive performance as possible
- No emphasis on interpretation \rightarrow lots of variables, complex relationships and interactions
- No analytic expressions \rightarrow rely on low dimensional summaries \rightarrow don't present the full picture

- Emerging view:

- Low-order functional (nonparametric) models are adequate in most of our applications
\rightarrow tabular data in banking
- Directly interpretable
- Reversing emphasis on complex modeling
\rightarrow trade-off: small improvements in predictive performance vs interpretation

Examples of "Low Order" Models

- Functional ANOVA Models:

$$
f(\boldsymbol{x})=g_{0}+\sum_{j} g_{j}\left(x_{j}\right)+\sum_{j<k} g_{j k}\left(x_{j}, x_{k}\right)+\sum_{j<k<l} g_{j k l}\left(x_{j}, x_{k}, x_{l}\right)+\cdots
$$

- FANOVA models with low-order interactions are adequate for many of our applications
- Focus on models with functional main effects and second order interactions
- Stone (1994); Wahba and her students (see Gu, 2013)
\rightarrow use splines to estimate low-order functional effects non-parametrically
- Not scalable to large numbers of observations and predictors
- Recent approaches
\rightarrow use ML architecture and optimization algorithms to develop fast algorithms

FANOVA framework

$$
f(\boldsymbol{x})=g_{0}+\sum_{j} g_{j}\left(x_{j}\right)+\sum_{j<k} g_{j k}\left(x_{j}, x_{k}\right)
$$

- Model made up of mean g_{0}, main effects $\boldsymbol{g}_{j}\left(\boldsymbol{x}_{\boldsymbol{j}}\right)$, two-factor interactions $\boldsymbol{g}_{\boldsymbol{j} \boldsymbol{k}}\left(\boldsymbol{x}_{\boldsymbol{j}}, \boldsymbol{x}_{\boldsymbol{k}}\right)$
- Interpretability
- Fitted model is additive, effects are enforced to be orthogonal
- Components can be easily visualized and interpreted directly
- Regularization or other techniques used to keep model parsimonious
- Two state-of-the-art ML algorithms for fitting these models:
- Explainable Boosting Machine (Nori, et al. 2019) \rightarrow boosted tress
- GAMI Neural Networks (Yang, Zhang and Sudjianto, 2021) \rightarrow specialized NNs
- GAMI-Tree (Hu, Chen, and Nair, 2022) \rightarrow specialized boosted model-based trees

[^0]
Explainable Boosting Machine

- EBM - Boosted-tree algorithm by Microsoft group (Lou, et al. 2013)

$$
f(\boldsymbol{x})=g_{0}+\sum g_{j}\left(x_{j}\right)+\sum g_{j k}\left(x_{j}, x_{k}\right)
$$

- Microsoft InterpretML (Nori, et al. 2019)
- fast implementation in C++ and Python
- Multi-stage model training :
- 1: fit functional main effects non-parametrically
- Shallow tree boosting with splits on the same variable for capturing a non-linear main effect
- 2: fit pairwise interactions on residuals:
a. Detect interactions using FAST algorithm

b. For each interaction $\left(x_{j}, x_{k}\right)$, fit function $g_{j k}\left(x_{j}, x_{k}\right)$ non-parametrically using a tree with depth two: 1 cut in x_{j} and 2 cuts in x_{k}, or 2 cuts in x_{j} and 1 cut in x_{k} (pick the better one)
c. Iteratively fit all the detected interactions until convergence

Explainable boosting machine: Example

Friedman1 simulated data:

- sklearn.datasets.make friedman1
n_samples=10000, n_features=10, and noise=0.1.
- Multivariate independent features \boldsymbol{x} uniformly distributed on $[0,1]$

Continuous response generated by

$$
\begin{gathered}
y(\boldsymbol{x})=10 \sin \left(\pi x_{0} x_{1}\right)+20\left(x_{2}-0.5\right)^{2} \\
+20 x_{3}+10 x_{4}+\epsilon
\end{gathered}
$$

depending only $\boldsymbol{x}_{\mathbf{0}} \sim \boldsymbol{x}_{\mathbf{4}}$

GAMI-Net

- NN-based algorithm for non-parametrically fitting

$$
f(\boldsymbol{x})=g_{0}+\sum g_{j}\left(x_{j}\right)+\sum g_{j k}\left(x_{j}, x_{k}\right)
$$

- Multi-stage training algorithm:

1: estimate $\left\{g_{j}\left(x_{j}\right)\right\} \rightarrow$ train main-effect subnets and prune small main effects

2: estimate $\left\{g_{j k}\left(x_{j}, x_{k}\right)\right\} \rightarrow$ compute residuals from main effects and train pairwise interaction nets

- Select candidate interactions using heredity constraint
- Evaluate their scores (by FAST) and select top-K interactions;
- Train the selected two-way interaction subnets;

- Prune small interactions

3: retrain main effects and interactions simultaneously

Diagnostics: Effect importance and feature importance

- Each effect importance (before normalization) is given by

$$
D\left(h_{j}\right)=\frac{1}{n-1} \sum_{i=1}^{n} g_{j}^{2}\left(x_{i j}\right), \quad D\left(f_{j k}\right)=\frac{1}{n-1} \sum_{i=1}^{n} g_{j k}^{2}\left(x_{i j}, x_{i k}\right)
$$

- For prediction at \boldsymbol{x}_{i}, the local feature importance is given by

$$
\phi_{j}\left(x_{i j}\right)=g_{j}\left(x_{i j}\right)+\frac{1}{2} \sum_{j \neq k} g_{j k}\left(x_{i j}, x_{i k}\right)
$$

- For GAMI-Net (or EBM), the global feature importance is given by

$$
\operatorname{FI}\left(x_{j}\right)=\frac{1}{n-1} \sum_{i=1}^{n}\left(\phi_{j}\left(x_{i j}\right)-\overline{\phi_{j}}\right)^{2}
$$

- The effects can be visualized by a line plot (for main effect) or heatmap (for pairwise interaction).

GAMI-Net: Example

Friedman1 data:

$$
y(\boldsymbol{x})=10 \sin \left(\pi x_{0} x_{1}\right)+20\left(x_{2}-0.5\right)^{2}+20 x_{3}+10 x_{4}+\epsilon
$$

Same data generated as for EBM example.

model_gaminet.show_feature_importance()

Comparisons: Bike Sharing Data

Bike sharing data:

- Another popular benchmark UCI dataset consisting of hourly count of rental bikes between years 2011 and 2012 in Capital bikeshare system.
- Sample size: 17379
- The features include weather conditions, precipitation, day of week, season, hour of the day, etc.
- The response is count of total rental bikes.

GAMI-Net Output with test RMSE $=0.0595$ and R2 $=89.89 \%$

Another example of "Low Order" Models:

- Additive Index Models:

$$
f(\boldsymbol{x})=g_{1}\left(\boldsymbol{\beta}_{1}^{T} \boldsymbol{x}\right)+g_{2}\left(\boldsymbol{\beta}_{2}^{T} \boldsymbol{x}\right)+\ldots+g_{K}\left(\boldsymbol{\beta}_{\boldsymbol{K}}^{\boldsymbol{T}} \boldsymbol{x}\right)
$$

- Generalization of GAMs:

$$
f(\boldsymbol{x})=g_{1}\left(x_{1}\right)+g_{2}\left(x_{2}\right)+\ldots+g_{P}\left(x_{P}\right)
$$

- Incorporates certain types of interactions
- Projection pursuit regression (Friedman and Stuetzle, 1981)
- Need for scalable algorithms with large datasets and many predictors

- Use specialized neural network architecture and associated fast algorithms
-eXplainable Neural Networks (xNNs) \rightarrow Vaughan, Sudjianto, ... Nair (2020)

Summary

- Advent of "Big Data" and advances in computing \rightarrow many opportunities
- Large datasets \rightarrow flexible models \rightarrow better performance
- Automated feature engineering and selection
- Exploit information in new sources of data (text)
- Challenges
- Computational
- Overfitting, model robustness, generalizability, ...
- Incorporating shape constraints and subject matter knowledge
- Interpretability
- Fairness and Bias

[^0]: Nori, Jenkins, Koch and Caruana (2019). InterpretML: A Unified Framework for Machine Learning Interpretability. arXiv: 1909.09223 Yang, Zhang and Sudjianto (2021, Pattern Recognition): GAMI-Net. arXiv: 2003.07132

