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Abstract: Maximin distance designs as an important class of space-filling designs

are widely used in computer experiments, yet their constructions are challenging.

We develop an efficient procedure to generate maximin Latin hypercube designs,

as well as maximin multi-level fractional factorial designs, from existing orthog-

onal or nearly orthogonal arrays via level permutation and expansion. We show

that the distance distributions of the generated designs are closely connected with

the distance distributions and generalized word-length patterns of the initial de-

signs. Examples are presented to show that our method outperforms many current

prevailing methods.
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1. Introduction

Computer experiments are widely used in scientific researches and prod-

uct developments to simulate real-world problems with complex computer codes

(Santner, Williams and Notz (2013); Fang, Li and Sudjianto (2006); Morris and

Moore (2015)). The most suitable designs for computer experiments are space-

filling Latin hypercube designs (LHDs), yet their construction are challenging,

especially for those with a large number of runs and factors.

Many researchers have studied orthogonal LHDs; see, among others, Stein-

berg and Lin (2006), Cioppa and Lucas (2007), Lin, Mukerjee and Tang (2009),

Sun, Liu and Lin (2010) and Yang and Liu (2012). However, orthogonal LHDs

are not necessarily space-filling, e.g. design (a) in Figure 1. Another approach is

through computer search using some optimality criteria based on discrepancy or

distance. Hickernell (1998) defined several discrepancy criteria, and among them

the centered L2-discrepancy (CD) is the most widely accepted. Johnson, Moore

and Ylvisaker (1990) proposed the maximin and minimax distance criteria. In
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Figure 1. Comparison of 9-run 2-factor LHDs.

this paper, we adopt the maximin distance criterion which seeks to scatter design

points over the experimental domain such that the minimum distance between

points is maximized. Johnson, Moore and Ylvisaker (1990) showed that maximin

distance designs are asymptotically optimal under a Bayesian setting. Morris and

Mitchell (1995) proposed the criterion

φp =

 n∑
i=2

i−1∑
j=1

1

dpi,j

1/p

, (1.1)

where di,j is the distance between the ith and jth row of the design. When

p is sufficiently large, φp is asymptotically identical to the maximin distance

criterion. Morris and Mitchell (1995), Joseph and Hung (2008), Ba, Myers and

Brenneman (2015), and many others proposed algorithms to construct maximin

LHDs; see Lin and Tang (2015) for a summary. To the best of our knowledge,

the R package SLHD by Ba, Myers and Brenneman (2015) is currently the most

efficient algorithm.

Tang (1993) proposed to generate orthogonal array-based LHDs (OALHDs)

by expanding levels in randomized orthogonal arrays (OAs). Though these OAL-

HDs have desirable sampling and projection properties, most of them are not

space-filling, e.g. designs (b) and (c) in Figure 1. A searching scheme can be

applied to OALHDs (Leary, Bhaskar and Keane (2003)), but the results are not

satisfactory. Ba, Myers and Brenneman (2015) used a level expansion procedure

similar to that of Tang (1993) when generating SLHDs with multiple slices. They

justified their method from a geometric perspective but did not provide theoret-

ical support. We provide some theoretical results to complement the work of

Tang (1993) and Ba, Myers and Brenneman (2015). We show that OAs, or

nearly OAs if OAs do not exist, are good initial designs as they tend to generate

robust space-filling designs. To avoid searching over the entire space of OALHDs
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generated via level expansion, we propose to perform level permutations on the

initial designs and restrict level expansions only to the maximin OAs. Tang, Xu

and Lin (2012), Tang and Xu (2013), and Zhou and Xu (2014) used the level

permutation method for constructing uniform and maximin fractional factorial

designs, but their method cannot be used to construct LHDs and relies on the

existence of multi-level OAs. We propose a procedure, the maximin distance

level expansion (MDLE) method, to construct maximin designs by combining

the strength of level permutation and expansion while avoiding their weaknesses.

Our procedure is efficient, providing better designs using less time compared with

existing methods. It is general, not only in the capability of constructing both

maximin fractional factorial designs and maximin LHDs, but also in the flexi-

bility to use multiple phases in level expansion that can significantly reduce the

computation needed.

This paper is organized as follows. We present our theoretical results in

Section 2. In Section 3, we introduce the procedure, searching algorithm, and

justifications for our MDLE method. In Section 4, examples are given to show

that our method outperforms the ordinary level expansion method, the OMLHD

method, the R package SLHD, and the level permutation method. In Section

5, we introduce a multi-phase method for constructing large maximin designs.

Section 6 concludes, and all proofs are given in the Appendix.

2. Some Theoretical Results

Let D(n, sk) be an n-run, k-factor, and s-level (labelled as 1, 2, . . . , s) bal-

anced design where each level appears exactly n/s times in every column. From

the initial design D(n, sk) we can generate a set of designs D′(n, (ms)k) with ms

levels by a level expansion procedure. For each column in the initial design D,

we replace the n/s positions of entry l (l = 1, 2, . . . , s) by a random sequence of

n/(ms) replicates of numbers: (l−1)m+ 1, (l−1)m+ 2, . . . , (l−1)m+m, where

n, k, s,m are all integers larger than 1 and n is divisible by ms. When m = n/s,

the generated D′s are LHDs.

Example 1. As an illustration, we perform the level expansion procedure to

generate a D′(8, 42) from a D(8, 22). For each column in D, we first replace

all four entries of 1 with a random permutation of numbers: 1, 1, 2, 2, and then

replace all four entries of 2 with a random permutation of numbers: 3, 3, 4, 4,

thus generating a 4-level design D′. In all we have 1296 possible D′s. Here is an

example:
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D =

(
1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2

)T
⇒ D′ =

(
1 2 1 2 3 4 4 3

2 3 1 3 1 4 2 4

)T
.

Let xi,l be the (ith,lth) element and xi be the ith row of the initial design

D. After level expansion, they are x′i,l and x′i of the generated design D′, re-

spectively. Let hi,j be the Hamming distance (number of positions where the

corresponding entries in the pair of rows are different) between rows xi and xj .

Take dil,jl = |xi,l − xj,l|. Denote the L1-distance between two rows xi and xj as

di,j =
∑k

l=1 dil,jl. In this paper, we focus on constructing maximin designs in

regard to the L1-distance. Let dmin(D) be the minimum L1-distance among all

pairs of rows in design D. In the same way, we define h′i,j , d
′
il,jl, d

′
i,j and dmin(D′)

for the generated design D′, respectively. For any balanced design D, we define

the distance distribution as (# denotes the count)

Bl(D) = n−1#{(i, j) : di,j = l;xi, xj ∈ D, i, j = 1, 2, . . . , n}.

It is easy to show that a design without repeated runs has B0(D) = 1. The

maximin design is defined as the one that sequentially minimizes the distance

distribution B0(D), B1(D), B2(D), B3(D), . . . . Designs with smaller φp values

defined in (1.1) are more space-filling and have better distance distributions.

Lemma 1. (a) For i, j = 1, . . . , n and i 6= j, upper and lower bounds for the

L1-distance between the ith and jth row in the generated design D′ are

mdi,j − (m− 1)hi,j 6 d′i,j 6 mdi,j + (m− 1)k.

(b) Upper and lower bounds for the minimum pairwise L1-distance of the gener-

ated design D′ are

mdmin(D)− (m− 1)hmax(D) 6 dmin(D′) 6 mdmin(D) + (m− 1)k,

where hmax(D) is the largest pairwise Hamming distance in design D.

Given n, s, and k, from different initial designs D(n, sk), by level expansion

we can generate different sets of designs D′(n, (ms)k). By Lemma 1, the upper

bound for dmin(D′) is determined by dmin(D). If we can generate a design

D′opt with dmin(D′opt) = mdmin(DMm) + (m − 1)k where DMm is the maximin

initial design, it is clear that D′opt has the largest minimum distance among all

possible D′s from all possible initial designs D. In Lemma 1, the lower bound of

dmin(D′) is also positively related with dmin(D). Therefore, in order to generate

good maximin designs via level expansion, initial designs with better distance

distributions should be used.

From any initial design D, by level expansion we have ((n/s)!/(r!)m)sk pos-



CONSTRUCTION OF MAXIMIN DISTANCE DESIGNS VIA LEVEL PERMUTATION 1399

sible generated designs D′, where r = n/(ms).

Theorem 1. For i, j = 1, . . . , n and i 6= j, the expectation and variance of the

pairwise L1-distances in the generated designs D′ via level expansion have the

following relationship with the pairwise L1-distance in the initial balanced design

D:

E(d′i,j) = mdi,j + (k − hi,j)γ and Var(d′i,j) = C1,0 + C1,1hi,j ,

where γ = n(m2 − 1)/[3m(n− s)], C1,0 = kn(m2 − 1)(m2n+ 2n− 3m2s)/

[18m2(n− s)2], and C1,1 = (m2 − 1)[2n2(m2−1)−3m2s(n−s)]/[18m2(n− s)2].

Thus the expected value of d′i,j is a function of both di,j and hi,j . For a 2-

level design, the L1-distance di,j equals the Hamming distance hi,j . For a design

with more than 2 levels, di,j is greater than or equal to hi,j . In addition, the

coefficient (m) for di,j is almost three times as large as the absolute value of the

coefficient (γ) for hi,j . Therefore, the expected value of d′i,j is dominated by di,j .

Generally speaking, a large di,j value leads to a large d′i,j value on average.

When s > 2, we can improve designs’ minimum distances by level permu-

tation (Zhou and Xu (2014)). When permuting levels for one or more factors

of a design, the pairwise Hamming distances do not change, but its pairwise

L1-distances vary. Given a design D(n, sk), we can generate in total (s!)k level-

permuted designs (including isomorphic designs) and then consider all possible

level expansions for each design. Let Θ denote the set of all designs generated

by all level permutations and expansions.

Lemma 2. When all possible level permutations and expansions are considered,

for i 6= j, the expectation and variance of the pairwise L1-distances in generated

designs D′ are

EΘ(d′i,j) = kγ + (m
s+ 1

3
− γ)hi,j ,

V arΘ(d′i,j) = C1,0 +

(
C1,1 +m2 (s+ 1)(s− 2)

18

)
hi,j ,

where γ, C1,0, and C1,1 are constants defined in Theorem 1.

Now we study the space-filling property for the generated design D′. For

D′ ∈ Θ, let d̄′ =
∑n

i 6=j=1 d
′
i,j/(n(n− 1)) be the average distance in the generated

design D′. It is easy to show that d̄′ = kn(m2s2 − 1)/(3ms(n− 1)) because D′

is level balanced for each column. Next, we show that the expectation of sum

of squared distances in D′ is minimized when the initial design is an OA. The

concepts of generalized word-length pattern (GWLP) and generalized minimum
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aberration (GMA) from Xu and Wu (2001) are needed to describe this result. For

design D(n, sk), the GWLP is the vector (A1(D),A2(D), . . . Ak(D)), where the

value of Aj(D) (j = 1, 2 . . . , k) represents the total aliasing between the general

mean and all j-factor interactions in the full ANOVA model. The GMA criterion

sequentially minimizes the GWLP.

Theorem 2. When all possible level permutations and expansions are considered,

EΘ(

n∑
i 6=j=1

(d′i,j)
2) = C2,1A2(D) + C2,0,

where C2,1 = 2n2(m(s+ 1)/3− γ)2/s2 and C2,0 is a constant.

From Theorem 2, we have EΘ(
∑n

i 6=j=1(d′i,j − d̄′)2) = EΘ(
∑n

i 6=j=1(d′i,j)
2) −

EΘ(
∑n

i 6=j=1(d̄′)2) = C2,1A2(D) + constant. Since C2,1 > 0, the expectation of

the variation of pairwise L1-distances in D′ is minimized when A2(D) = 0. For

a level balanced design, A1(D) = 0. Xu and Wu (2001) showed that D is an OA

of strength two if and only if A1(D) = A2(D) = 0. Thus, if the initial design is

an OA of strength two or higher, generated designs tend to have small variations

among all pairwise L1-distances and large minimum pairwise L1-distance. In

other words, designs generated from OAs via level permutation and expansion

tend to have robust space-filling properties.

Example 2. Consider constructing 32-run LHDs with 8 factors from five different

2-level designs with different A2 or A3 values. The first two designs are regular

28−3 designs (with A2 = 0) and the other three designs have 1, 2, 3 pairs of

duplicated columns, indicated by A2 = 1, 2, 3, respectively. Given a 2-level

design, we randomly generated 105 LHDs via level permutation and expansion

and computed the minimum pairwise L1-distance for each of them. Table 1

compares the minimum, first quartile (Q1), median, third quartile (Q3) and

maximum of the 105 minimum distances for five different initial designs. It is

evident that initial designs with smaller A2 values are more likely to generate

designs with larger minimum distances via level permutation and expansion.

It is possible, but tedious, to extend Theorem 2 and link EΘ(
∑n

i 6=j=1(d′i,j)
r)

with the values of A2(D), . . . , Ar(D) for r > 2, similar to Theorem 4 of Zhou and

Xu (2014). We do not pursue this here.

3. Maximin Distance Level Expansion (MDLE) Method

3.1. Procedures of MDLE

Based on the results in the previous section, we propose the MDLE method
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Table 1. Summary of minimum pairwise L1-distances.

Design (A1, A2, A3, A4) Min Q1 Median Q3 Max
Design 1 (0, 0, 0, 3) 15 36 39 42 52
Design 2 (0, 0, 1, 2) 15 35 38 41 51
Design 3 (0, 1, 0, 2) 14 33 36 39 49
Design 4 (0, 2, 0, 1) 11 32 35 38 48
Design 5 (0, 3, 0, 3) 10 29 32 34 45

that combines both level permutation and expansion. The method starts from

OAs, or nearly-OAs if the corresponding OAs are not available, and expands their

levels with one or more phases. Here we first discuss how to construct maximin

designs from OAs with only one phase of level expansion. Refer to Section 5

for generalizations. To generate D′(n, (ms)k), we start from an OA(n, sk0) with

k0 ≥ k. The MDLE method has three steps.

1. Select the GMA k-column subset from an OA(n, sk0) and denote this design

by D(n, sk).

2. If s > 2, perform level permutation for design D from Step 1. Select the

maximin design and denote it by Dp(n, s
k).

3. For each column in Dp from Step 2, replace the n/s positions of entry

l (l = 1, 2, . . . , s) by a random sequence of n/(ms) replicates of numbers:

(l − 1)m+ 1, (l − 1)m+ 2 . . . , (l − 1)m+m. Select the maximin design as

the final design D′(n, (ms)k).

We usually start from saturated OA(n, sk0), or nearly saturated OAs with

k0 ≤ (n− 1)/(s− 1). When k0!/(k!(k0 − k)!) is small, we can enumerate and

compare all subsets to find the GMA subset in Step 1; otherwise, we adopt a

simple searching method: randomly generate and compare ngma subsets and

select the GMA subset where ngma ranges from 1,000 to 5,000 based on the

design size and computation available. We use the concept of minimum moment

aberration (Xu (2003)) to efficiently determine GMA subsets. For 2-level regular

designs we choose existing minimum aberration designs from the R package FrF2.

In Steps 2 and 3, we adopt a threshold accepting (TA) algorithm modified from

that of Dueck and Scheuer (1990). Compared with the simulated annealing

algorithm by Kirkpatrick (1984) and Morris and Mitchell (1995), TA converges

faster.

To implement the TA algorithm, we need to specify neighbour designsN (Dc)

for a current design Dc in Steps 2 and 3. To generate neighbour designs N (Dc)
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in Step 2, we randomly choose two levels from a randomly chosen column of Dc

and exchange all elements of these two levels. In Step 3, we define neighbour

designs N (Dc) by exchanging the levels in two positions from a randomly chosen

column of Dc, where these two positions have different values in Dc and the same

value in Dp from Step 2.

We choose φ(D) = φp(D) defined in (1.1) as the objective function to be

minimized in our TA algorithm. The pseudo code for our TA algorithm is given

in Algorithm 1. Based on the design size and time limits, typically we set nseq
equal to 2,000, choose nrounds from 30 to 75, and choose nsteps from 3,000 to

7,500.

Algorithm 1 Pseudo code for threshold accepting (TA) algorithm

Initialize nseq (number of steps to compute threshold sequences)
Initialize nrounds (number of rounds) and nsteps (number of steps)
Initialize a starting design Dc and let Dmin = Dc

for i = 1 to nseq do
Generate a new design Dn from its neighbors N (Dc) and let ∆i = |φ(Dc)−φ(Dn)|

end for
Compute the empirical distribution of ∆i , i = 1, 2, . . . , nseq, denoted it as F (x)
for r = 1 to nrounds do

Generate threshold τr = F−1 (0.5(1− r/nrounds))
for j = 1 to nsteps do

Generate a new design Dn from the neighbors N (Dc) and let δ = φ(Dn)−φ(Dc)
if δ < τr then let Dc = Dn

if φ(Dc) < φ(Dmin) then let Dmin = Dc

end for
end for
Return Dmin

3.2. Justifications for the procedures of MDLE

Zhou and Xu (2014) showed that from GMA initial designs we can generate

designs with the best distance distributions on average via all possible level per-

mutations. Thus, choosing GMA design D in Step 1 can benefit finding maximin

design Dp in Step 2. Further, Lemma 1 and Theorem 1 in Section 2 show that

from the maximin design Dp we can generate D′s with the best distance distri-

butions on average in Step 3. By Theorem 2, GMA initial designs minimize the

expectation of the variation of distances in generated designs via level permuta-

tion and expansion. Therefore, this 3-step procedure is robust and efficient in

generating good space-filling designs.



CONSTRUCTION OF MAXIMIN DISTANCE DESIGNS VIA LEVEL PERMUTATION 1403

We further justify our method from a geometric point of view. Ba, Myers

and Brenneman (2015) discussed a relevant geometric idea, but it only applies

to SLHDs with multiple slices. Here we discuss the situations for fractional

factorial designs and general LHDs, including SLHDs with only one slice. We

relate a design’s geometric structure with its GMA structure. To get a space-

filling n-run and k-factor design, a straightforward idea is to divide the design

space equally into n k-dimensional lattices, put one point in each lattice, and

properly adjust each point’s position within its lattice. This geometric structure

of “one point per lattice” can be achieved by performing level expansion to full

factorial initial designs. For example, see OALHDs in Figure 1(b), (c), and

(d) generated by the level expansion process from full factorial D(9, 32). These

designs have only one point per lattice formed by the solid lines, but the positions

of points within the lattices are different. By either the level permutation or level

expansion process, the “one point per lattice” structure is not changed, but their

positions within the lattice are adjusted, and thus the distance distribution of

the design can be improved. By our MDLE method with full factorial initials, we

can find the design with best distance distribution while keeping the “one point

per lattice” structure, e.g., design (d) in Figure 1.

As a generalization, when n < sk, an initial design with the most low-

dimensional projections that are full factorials is ideal for our MDLE method,

and GMA designs have such a property in many cases. Box and Hunter (1961)

pointed out that any p-dimensional (p < r) projection of a 2-level regular design

with resolution r is a full-factorial design. Chen (1998) proved that for a 2-level

regular design,
(
k
p

)
−
∑p

j=r

(
k−j
p−j
)
Aj(D) p-dimensional projections (p = r, . . . , br+

(r − 1)/2)c) are full-factorial designs. Under these cases, since the GMA initials

have largest resolutions and sequentially minimize Aj(D) (j = 1, 2, . . . k), they

have the most parts that are full-factorials in p-dimensional projection spaces

(p 6 br+(r−1)/2)c). GMA nonregular designs have similar projection properties;

see Xu, Phoa and Wong (2009) for a review. As a result, GMA initial designs

tend to generate better space-filling designs via level expansion.

4. Results and Comparisons

4.1. Construction of maximin LHDs

First, we compared our MDLE method with the ordinary level expansion

(OLE) method of Tang (1993) and Leary, Bhaskar and Keane (2003) in generating

maximin OALHDs. The OLE method first randomly selects a required number
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Table 2. Comparisons of constructions of maximin LHDs.

MDLE OLE OMLHD SLHD
n k d(pair) ψp d2 d(pair) d(pair) ψp d(pair) d2

27 9 72(2) 0.012 28.8 68(5) 60(1) 0.025 63(1) 28.2
32 20 205(1) 0.005 55.6 205(2) 177(1) 0.012 190(1) 55.1
54 5 54(1) 0.0311 28.1 45(1) 47(2) 0.0393 44(1) 27.8
54 20 329(1) 0.0034 88.4 317(1) 279(1) 0.0083 294(1) 88.2
54 25 425(3) 0.0022 102.7 399(1) 360(1) 0.012 382(1) 100.9
64 6 83(1) 0.0209 40.6 61(1) 70(3) 0.0299 67(1) 39.1
64 20 378(1) 0.0034 105.2 369(1) 310(1) 0.0084 340(1) 102.6
64 40 813(1) 0.0025 157.4 804(1) 698(1) 0.0048 771(1) 155.7
81 8 152(1) 0.0111 64.2 102(1) 123(2) 0.0198 121(1) 62.7
81 25 604(2) 0.0022 147.9 577(1) 504(1) 0.0028 540(1) 146.7
81 40 1,016(1) 0.0016 194.9 962(1) 899(1) 0.0016 934(1) 194.5

125 10 284(2) 0.0072 111.8 199(1) 237(3) 0.0136 232(1) 110.6
125 23 797(1) 0.0021 206.9 640(1) 668(1) 0.0021 726(1) 206.8
125 31 1,126(1) 0.0014 251.1 971(1) 955(1) 0.0076 1,038(1) 250.8
128 12 378(1) 0.0051 135.5 284(1) 314(1) 0.0092 313(1) 132.6
128 49 1,893(1) 0.0014 337.6 1,873(1) 1,643(1) 0.0057 1,801(1) 335.3
128 64 2,512(1) 0.0017 395.2 2,479(1) 2,239(1) 0.0061 2,497(1) 392.1

of columns from a saturated or nearly saturated OA to be the initial design, then

performs level expansion, and searches for the maximin generated LHDs. In

order to make a fair comparison, we replaced the simulated annealing algorithm

in Leary, Bhaskar and Keane (2003) with our more efficient TA algorithm.

Table 2 lists some arbitrarily chosen cases for comparison, where “d(pair)”

represents the minimum pairwise L1-distance (and the number of pairs with the

minimum distance). For all tables, we use bold font to represent the better

results. For the 32, 64 and 128-run cases, the MDLE method starts from the

respective 2-level minimum aberration initial designs that are available in R

package FrF2, whereas the OLE method starts from the corresponding saturated

OAs. For the 27, 54, 81, and 125-run cases, both methods start from initial

designs OA(27, 313), OA(54, 325), OA(81, 340), and OA(125, 531), respectively;

these are available in R package DoE.base. All codes were run in R on a laptop

with an Intel 2.50GHz I7 CPU. Time used by our MDLE method ranged from

5 minutes to an hour for the different cases here. For all cases, we let the OLE

method use at least twice as much time as the MDLE method.

From Table 2, it is clear that the MDLE method generates better OALHDs

than the OLE method for all cases. Compared with the MDLE method, the

OLE method only includes Step 3, but does not have the first two steps of the
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MDLE method. Thus, Table 2 shows the usefulness of the first two steps in the

MDLE method which provides good initial designs for level expansion. When

the MDLE method starts with 2-level initial designs, Step 2 is skipped since level

permutations do not change designs’ distance distributions. Thus, the usefulness

of Step 1 alone can be seen from the 32, 64 and 128-run cases in Table 2. From

the 54-run/25-factor, 81-run/40-factor and 125-run/31-factor cases, we can see

the usefulness of Step 2 alone since Step 1 is skipped.

Next, we compared our MDLE method with the OMLHD method of Joseph

and Hung (2008) and the R package SLHD of Ba, Myers and Brenneman (2015)

in generating space-filling LHDs. Joseph and Hung (2008) proposed the multi-

objective criterion

ψp = ωρ2 + (1− ω)
φp − φp,lb
φp,ub − φp,lb

, (4.1)

where φp is defined in (1.1) with p = 15, ρ2 is the average of squared column-wise

correlations, ω is the weight which is set to 0.5, φp,lb and φp,ub are the smallest

and largest possible φp values. Joseph and Hung (2008) used a modified simu-

lated annealing algorithm to search for LHDs that minimize ψp values. Table

2 lists some cases for comparison, where ψp is defined in (4.1) and d2 repre-

sents designs’ minimum pairwise L2-distances. For the OMLHD method, we ran

the code from Y. Hung’s homepage (http://stat.rutgers.edu/home/yhung/

index.htm) with nstart = 5 and default settings, and chose the best results.

For the SLHD method, we ran the command maximinSLHD with slice parameter

t = 1 and default settings for 200 times, and chose the best results.

For all cases in Table 2, the MDLE method generates better space-filling

designs than the OMLHD method in regard to both the L1-distance and the

ψp criterion. Our MDLE method searches designs toward the L1-distance alone.

Designs from our method have small pairwise correlations, since they can always

collapse to OAs or nearly OAs. Further, the MDLE method generates better

maximin designs than the SLHD method under both the L1- and L2-distances.

In order to make a fair comparison with the SLHD package, the φp criterion used

in the MDLE method adopted the L1- and L2-distance for each case respectively.

Our MDLE method was implemented in R whereas the SLHD and OMLHD

methods were implemented in C++. The R package SLHD provides an interface

to call the C++ program. Our MDLE method used less than half of the time

used by the SLHD and OMLHD methods, although C++ is more efficient than

R in terms of computation.

http://stat.rutgers.edu/home/yhung/index.htm
http://stat.rutgers.edu/home/yhung/index.htm
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Table 3. Comparisons in the constructions of four-level maximin FFDs.

(a)
MDLE LP

n k d(pair) d(pair)
16 3 2(12) 2(12)
16 4 4(60) 4(56)
16 5 4(1) 4(4)
32 3 2(156) 2(156)
32 4 2(8) 2(8)
32 5 4(100) 4(106)
32 6 5(48) 5(58)
32 7 6(24) 6(28)
32 8 8(132) 8(128)
32 9 9(62) 8(6)

(b)
MDLE LP

n k d(pair) d(pair)
48 10 9(6) 8(3)
48 13 13(15) 12(10)
64 9 8(395) 6(38)
64 11 10(77) 9(12)
80 7 5(177) 4(48)
80 11 9(1) 8(29)

128 29 30(42) 29(79)
128 40 43(1) 40(2)

4.2. Construction of maximin fractional factorial designs

First, we compared our MDLE method with the level permutation (LP)

method of Zhou and Xu (2014) in generating maximin fractional factorial de-

signs (FFDs). Zhou and Xu (2014) included a table of 10 maximin designs with

n 6 32 that are comparable here, and we list them in Table 3 (a). We further

selected another eight larger cases with n > 48 in Table 3 (b) to compare the

two methods. All designs are 4-level FFDs. For the MDLE method, in the 16,

32, 64, and 128-run cases, 2-level minimum aberration initial designs were used;

in the 48 and 80-run cases, OA(48, 247) and OA(80, 279) were used as the initial

designs. For the LP method, in the 48, 64, 80 and 128-run cases, initial designs

OA(48, 413), OA(64, 411), OA(80, 411) and OA(128, 440) were used, respectively.

Both methods’ codes were run in R. For all cases, the LP method used at least

twice as much time as the MDLE method.

In Table 3 (a), for the first nine cases both methods generated designs with

the same minimum pairwise distances. For the last case in Table 3 (a) and all

cases in Table 3 (b), the MDLE method outperforms the LP method. Further-

more, the LP method relies on existing OA initials that have the same number

of runs, factors and levels as the generated designs. These OAs are often diffi-

cult to find or even do not exist. For example, there is no OA(24, 68) that can

be used to generate maximin D′(24, 68). Compared with the LP method, our

MDLE method has more flexibility in design size, since we can start from 2-level

designs to generate multi-level designs. For example, we can start from a 2-level

OA(24, 223) to generate the 24-run/6-level maximin design with up to 23 factors.
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Table 4. Comparison in the construction of four-level and six-level uniform designs.

MDLE MDLE-CD UD-page designs
n k s CD d(pair) CD d(pair) CD d(pair)

32 7 4 0.074 6(18) 0.070 5(6) 0.071 4(1)
32 13 4 0.0343 13(5) 0.0343 13(5) 0.0344 12(2)
40 13 4 0.3186 13(4) 0.3067 12(5) 0.3068 11(1)
40 15 4 0.5080 16(56) 0.4969 13(1) 0.4987 14(1)
48 11 4 0.1841 10(11) 0.1758 8(1) 0.1767 7(1)
48 15 4 0.461 15(13) 0.447 13(1) 0.449 12(1)
36 12 6 0.1744 20(15) 0.1673 19(14) 0.1691 17(1)
48 12 6 0.1416 19(21) 0.1362 16(2) 0.1374 16(1)
54 9 6 0.0601 12(13) 0.0564 8(1) 0.0568 10(3)
54 12 6 0.1362 17(14) 0.1268 16(1) 0.1299 16(2)
60 9 6 0.0576 12(11) 0.0544 8(1) 0.0546 9(2)

Next, we compared designs from our MDLE method with some existing

uniform designs listed on the uniform design homepage (http://uic.edu.hk/

isci/). These uniform designs (UD-page designs) were searched by Kaitai Fang

and his collaborators toward the centered L2-discrepancy (CD) criterion where

smaller CD values indicate more space-filling designs. In order to make a fair

comparison, in Table 4 we also include a modified version of our MDLE method

(MDLE-CD) which searches best designs using the CD criterion in Step 3. We

selected some 4-level and 6-level cases for comparison in Table 4. Both the

MDLE and MDLE-CD methods started from the initial designs OA(32, 231),

OA(40, 239), and OA(48, 247) to generate the 4-level designs, and OA(36, 313),

OA(48, 247), OA(54, 318), and OA(60, 230) to generate the 6-level designs for the

corresponding cases.

Table 4 shows that designs by the MDLE method are always better than

the UD-page designs in regard to maximin distance criterion. Designs from the

MDLE-CD method are better than the UD-page designs toward the CD criterion.

5. Multi-Phase MDLE Method

In constructing maximin designs D′(n, (ms)k) from initial designs D(n, sk),

when m is very large, the one-phase MDLE method introduced in Section 3 is not

efficient because level expansion produces too many designs. In addition, when n

and k are too large given the computation constraint, we need to further restrict

the searching space in the MDLE method. Under such situations, we can apply

a multi-phase MDLE method. The multi-phase MDLE method shares the same

http://uic.edu.hk/isci/
http://uic.edu.hk/isci/
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Table 5. Comparison of one-phase and two-phase MDLE methods in constructing LHDs.

One-phase Two-phase
n k d(pair) time d(pair) time sequence

27 3 14(4) 67 14(5) 107 3→ 9→ 27
32 5 37(1) 103 37(3) 101 2→ 8→ 32
64 6 83(1) 301 81(1) 306 2→ 8→ 64
81 4 50(1) 478 50(3) 490 3→ 9→ 81

125 3 38(5) 603 37(3) 950 5→ 25→ 125
32 15 151(1) 211 150(2) 218 2→ 8→ 32
54 12 173(1) 886 178(2) 806 3→ 9→ 54
54 20 309(1) 1,346 322(2) 1,275 3→ 9→ 54
64 40 805(1) 1,062 810(1) 995 2→ 8→ 64
81 40 1,005(1) 1,479 1,014(1) 936 3→ 9→ 54

125 31 1,111(1) 2,085 1,116(1) 1,548 5→ 25→ 125
Note: Time in seconds.

Steps 1 and 2 as the one-phase MDLE. The difference lies in Step 3: instead of

directly generating D′(n, (ms)k) from Dp(n, s
k), we gradually expand the levels

from s to ms in multiple phases. For example, in a two-phase MDLE method

with m = m1m2, in Step 3 we first generate maximin design D1(n, (m1s)
k) via

level expansion from Dp in Step 2; then from D1 we generate maximin design

D2(n, (m2m1s)
k) which is D′(n, (ms)k) via level expansion again. It is straight-

forward to generalize and justify this process with more phases in both theory

and geometry, as in Section 3.2.

The more phases we use, the more restrictions are put on the searching

space. The number of designs needed to be compared decreases dramatically

with multiple phases. For example, to generate D′(16, 82) from D(16, 22) for the

one-phase MDLE method, we have in total about 4 × 1013 possible D′s to be

compared; for the two-phase MDLE method, we only need to compare about

1.7 × 106 designs. More restrictions on the searching space also means that

we are more likely to miss good designs, at least in theory. In practice, with

limited computations, the multiple-phase method can be more efficient than the

one-phase method, especially for large designs.

Table 5 compares the one-phase and two-phase MDLE methods in generat-

ing maximin LHDs with time constraints. For both methods, we started from the

respective full factorial designs for the first five cases, the minimum aberration

designs for the 32- and 64-run cases, OA(54, 324), OA(81, 340), and OA(125, 531)

for the rest of cases, respectively. For the last five cases, where the numbers

of runs and factors are relatively large, the two-phase method generates better
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designs in a shorter time than the one-phase method. Given adequate compu-

tation time, the one-phase method eventually generates better designs than the

two-phase method; see the last four cases in Table 5 and corresponding results

in Table 2 where we ran the one-phase MDLE method for a longer time.

When OAs with different levels exist, generally speaking, it is better to use

OA initials with fewer levels given abundant computations. As an illustration,

for the 128-run/12-factor case, starting from the 2-, 4- and 8-level OA initials,

the one-phase MDLE method generates LHDs with the minimum L1-distances

of 378, 375 and 368, respectively. The 2-level OA initial gives the best result

here, but requires more than 5 times the computations to achieve a stable result

compared with the 8-level initial. Since any 8-level OA can be collapsed to a

2-level OA, the MDLE method is less likely to miss good results from 2-level

OAs. For large designs with computation constraints, OA initials with larger

levels may work better since the searching space is much smaller and less phases

are needed.

6. Summary

We propose the MDLE method which can efficiently generate maximin LHDs

and maximin fractional factorial designs. To justify our method, we establish a

relationship of the L1-distance distributions between the initial and generated

designs via level expansion. When all possible level permutations of the initial

designs are considered, we give expectations and variances of the pairwise L1-

distances for the generated designs.Various comparisons show that our MDLE

method outperforms the ordinary level expansion process, the OMLHD algo-

rithm, the SLHD package, and the level permutation method. We also find

many more space-filling designs compared to the existing uniform designs.

The MDLE method is easy to generalize for mixed-level cases. Starting from

a mixed-level initial design, we can individually set the level expansion path for

each factor. In this way, we can generate mixed-level factorial designs. Although

the MDLE method cannot generate maximin designs with any run size, it works

well from nearly OAs (Xu (2002)) or optimal supersaturated designs (Xu and

Wu (2005)), when suitable OA initials are not available.
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Appendix: Proofs

Proof of Lemma 1. (a) For i 6= j, when xi,l = xj,l, d
′
il,jl takes on values of

0, 1, . . . ,m−1; when xi,l 6= xj,l, d
′
il,jl takes on values ofm(dil,jl−1)+1, . . . ,m(dil,jl−

1) + 2m− 1. Therefore, the smallest possible d′i,j value is

min d′i,j = 0 ∗ (k − hi,j) +

hi,j∑
l=1

(m(dil,jl − 1) + 1) = mdi,j − (m− 1)hi,j

and the largest possible d′i,j value is

max d′i,j = (m− 1)(k − hi,j) +

hi,j∑
l=1

(m(dil,jl − 1) + 2m− 1) = mdi,j + k(m− 1).

Thus, we have mdi,j − (m− 1)hi,j 6 d′i,j 6 mdi,j + k(m− 1).

(b) Let xa and xb be the pair of rows in design D that forms the minimum

pairwise L1-distance dmin(D) (there could be many such pairs). Let x′c and x′d
be the pair of rows in design D′ that forms the minimum pairwise L1-distance

dmin(D′) (there could be many such pairs). Then

dmin(D′) = d′c,d 6 d′a,b 6 mda,b + k(m− 1) = mdmin(D) + (m− 1)k,

dmin(D′) = d′c,d > mdc,d − (m− 1)hc,d > mdc,d − (m− 1)hmax(D)

> mda,b − (m− 1)hmax(D) = mdmin(D)− (m− 1)hmax(D).

Thus, we have mdmin(D)−(m−1)hmax(D) 6 dmin(D′) 6 mdmin(D)+(m−1)k.

Proof of Theorem 1. We first calculate the probability distribution for d′il,jl with

its range given in Lemma 1. For i 6= j, when xi,l = xj,l, the probability distribu-

tion is

P (d′il,jl = 0) =
m
(
n/(ms)

2

)
m(m− 1)(n/(ms))2 +m

(
n/(ms)

2

) =
n−ms
m(n− s)

,

P (d′il,jl = t) =
2(m− t)(n/(ms))2

m(m− 1)(n/(ms))2 +m
(
n/(ms)

2

) =
2n(m− t)
m2(n− s)

for t = 1, 2, . . . ,m− 1. Thus,

E(d′il,jl) =

m−1∑
t=1

tP (d′il,jl = t) =
n(m2 − 1)

3m(n− s)
= γ, (A.1)

E((d′il,jl)
2) =

m−1∑
t=1

t2P (d′il,jl = t) =
n(m2 − 1)

6(n− s)
=
m

2
γ. (A.2)

When xi,l 6= xj,l, the probability distribution is
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P (d′il,jl = d0 + t) =
t+ 1

m2
, for t = 0, 1, . . . ,m− 1,

P (d′il,jl = d0 + t) =
2m− t− 1

m2
, for t = m, . . . , 2m− 2,

where d0 = m(dil,jl − 1) + 1. It is straightforward to verify that

E(d′il,jl) =

2m−2∑
t=0

(d0 + t)P (d′il,jl = d0 + t) = mdil,jl, (A.3)

E((d′il,jl)
2) =

2m−2∑
t=0

(d0 + t)2P (d′il,jl = d0 + t) = m2d2
il,jl +

m2 − 1

6
. (A.4)

It is clear that dil,jl = 0 when xi,l = xj,l. Combining (A.1) and (A.3), we have

E(d′i,j) =

k∑
l=1

E(d′il,jl) =

k∑
l=1

mdil,jl + (k − hi,j)γ = mdi,j + (k − hi,j)γ. (A.5)

Next, combining (A.2) and (A.4), we have

E

(
k∑
l=1

(d′il,jl)
2

)
=

k∑
l=1

E((d′il,jl)
2) = m2

k∑
l=1

d2
il,jl +

m2 − 1

6
hi,j + (k − hi,j)

mγ

2
.

(A.6)

Further, we have

E((d′i,j)
2) = E

( k∑
l=1

d′il,jl

)2
 = E

(
k∑
l=1

(d′il,jl)
2

)
+ E

 k∑
p 6=q=1

d′ip,jpd
′
iq,jq

 .

(A.7)

Since d′ip,jp and d′iq,jq (p 6= q) are independently determined by the pth and qth

columns in the initial design D, with (A.1) and (A.3), we have

E

 k∑
p 6=q=1

d′ip,jpd
′
iq,jq

 =

k∑
p 6=q=1

E(d′ip,jp)E(d′iq,jq) = m2
k∑

p6=q=1

dip,jpdiq,jq+

+ 2(k − hi,j)γ
k∑
l=1

mdil,jl + (k − hi,j)(k − hi,j − 1)γ2.

(A.8)

Combining (A.6), (A.7), and (A.8), after some simple algebra, we have

V ar(d′i,j) = E
(
(d′i,j)

2
)
−
(
E(d′i,j)

)2
= C1,0 + C1,1hi,j ,

where C1,0 and C1,1 are constants given in Theorem 1.
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Proof of Lemma 2. We need to distinguish two types of operations: level permu-

tation and level expansion. Let σ denote a level permutation and π denote a

level expansion. Let Eσ denote the expectation toward designs generated by all

possible level permutations and Eπ denote the expectation toward designs gen-

erated by all level expansions. As we perform level permutation first and level

expansion second, using the properties of conditional expectations, we have

EΘ(d′i,j) = Eσ[Eπ(d′i,j |σ)], (A.9)

V arΘ(d′i,j) = Eσ[V arπ(d′i,j |σ)] + V arσ[Eπ(d′i,j |σ)]. (A.10)

For a given level permutation σ, let dσi,j denote the L1-distance of a level permuted

design generated by σ. Level permutation does not change pairwise Hamming

distances of a design. Applying Theorem 1 to each level permutation σ, we have

Eπ(d′i,j |σ) = mdσi,j + (k − hi,j)γ, (A.11)

V arπ(d′i,j |σ) = C1,0 + C1,1hi,j . (A.12)

Similar to the proof of Theorem 1, when considering all possible level per-

mutations,

Eσ(dσi,j) =
s+ 1

3
hi,j , (A.13)

V arσ(dσi,j) = Eσ((dσi,j)
2)− [Eσ(dσi,j)]

2 =
(s+ 1)(s− 2)

18
hi,j . (A.14)

Combining (A.9), (A.11), and (A.13), we have

EΘ(d′i,j) = Eσ[mdσi,j + (k − hi,j)γ] = m
s+ 1

3
hi,j + (k − hi,j)γ

= kγ + (m
s+ 1

3
− γ)hi,j . (A.15)

Combining (A.10), (A.11), (A.12), and (A.14), we have

V arΘ(d′i,j) = Eσ[C1,0 + C1,1hi,j ] + V arσ[mdσi,j + (k − hi,j)γ]

= C1,0 + C1,1hi,j +m2V arσ[dσi,j ]

= C1,0 + (C1,1 +m2 (s+ 1)(s− 2)

18
)hi,j . (A.16)

Proof of Theorem 2. From (A.15) and (A.16), we have

EΘ(

n∑
i 6=j=1

(d′i,j)
2) =

n∑
i 6=j=1

EΘ((d′i,j)
2) =

n∑
i 6=j=1

[V arΘ(d′i,j) + (EΘ(d′i,j))
2]

=

n∑
i 6=j=1

[C1,0 + (C1,1 +m2 (s+ 1)(s− 2)

18
)hi,j ]
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+

n∑
i 6=j=1

[kγ + (m
s+ 1

3
− γ)hi,j ]

2. (A.17)

Xu (2003) showed that the GWLP is related to moments of Hamming distances.

In particular, for a balanced design with A1(D) = 0, we have the following

relationships:
n∑

i 6=j=1

hi,j =
kn2(s− 1)

s
, (A.18)

n∑
i 6=j=1

h2
i,j =

n2

s2
{2A2(D) + (s− 1)k[1 + (s− 1)k]}. (A.19)

Then the result follows from (A.17), (A.18), and (A.19).
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