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Abstract

We investigate two important properties of M-estimator, namely robustness and tractability,
in linear regression when the data are contaminated by arbitrary outliers.

Robustness: the statistical property that the estimator should always be close to the true pa-
rameters regardless of the distribution of the outliers

Tractability: the computational property that the estimator can be computed efficiently even
though the objective function can be non-convex.

In this article, by learning the landscape of the empirical risk, we show that under the high-
dimensional setting in which p >> n, many penalized M-estimators with L; regularizer en-
joy nice robustness and tractability properties simultaneously when the percentage of out-
liers is small.

Introduction

Why we need robust regression? Find a good model for majority data, Detect outliers, etc.

Outlier Outlier removed

Why consider M-estimators?

1. Formulation is simple but general.

2. Statistical properties are well-studied (Consistency and Asymptotic normality [3].)

3. Good robust properties (large breakdown point and bounded influence function [1].)

Our objective: Investigate the tractability of M-estimators and the relation with robustness.

Assume we have n pairs data {(y;, x;) }i=1.2... n, Which are generated from the linear model
with gross-error [2]:

<907 xz> + €y
(1 —9)fo + g, where fy and g denote the density for the idealized noise and outliers.

g = where y; € R, x; € R?,

€; ~

Remarks:

1. § € [0, 1] denotes the percentage of outliers.

2. fo has nice idealized properties: symmetric, zero mean, independent to x;, subgaussian.
3. g may be arbitrary: could be asymmetric, nonzero mean, dependent to z;.

M-estimators in low-dimensional case

In general, a M-estimator is obtained by solving the optimization problem:

Minimize:

mize: 1t,(0) = %Zp@i — (0,z:)),

subject to:  ||0]]2 < 7.

Here p : R — R is the loss function, and often is non-convex.

Table 1: Some well-known loss functions for M-estimators
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Theoretical result
We define the score function ¥ (z) := p'(2).

Assumption 1(a) The score function ¥ (z) is twice differentiable and odd in z with 1)(z) > 0 for all
z > 0. Moreover, we assume max{||9(2)||co, || (2)||0o, ||V (2)||co } < Lup.

(b) The feature vector x; are iid with zero mean and T2-sub-Gaussain, that is E[eM®9] <
exp(372||\||3) for all X € RP.

(c) The feature vector x; spans all direction in RP, that is E[z,;x] | = y7°I,x, for some 0 < v < 1.
(d) The idealized noise distribution fo(€) is symmetric and decreasing for € > 0.

Theorem 1
Assume assumption 1 holds and ||0o||2 < r/3. There exists constants ng = 2=C4 and gy = Co —
C30 > 0, such that for any © > 0, there exist constant C. depends on 7,~,r, 7,1, fo but independent

of n,p,0 and g , such that as n > C,plogn, the following statements hold with probability at least
I —m:

(@) Forall ||0 — 6yl|2 > 270,
(6 — 6o, VR, (0)) > 0.

There is no stationary point of R,,(0) outside of the ball B? (6, 2n).
(b) For all ||(9 — HOHQ < 1,

AN

Amin (VZR,(0)) > 0. (3)

AN

R, (0) is strong convex in the ball B (0,1;)

Thus, as long as 2ny < 11, R, (0) has a unique stationary point, which lies in the ball B (6, 2n0).

AN

This is the unigque global optimal solution of (1), and denote this unique stationary point by 0,,.

(c) There exists a positive constant k that depends on m,~,r, 1,9, fo but independent of n,p and g,
such that

4T \/pr logn

165, — Bol]2 < o +
K n

(4)

Penalized M-estimators in high-dimensional case

We consider the case when p >> n and the support of 0 is sparse. We consider the penalized
M-estimators by solving the optimization problem [4]:

Minimize:
6

En(0) i= 5 37 ol — (0,21)) + M6l 5)

102 <.

subject to:

Assumption 2
The feature vector x is bounded, i.e., there exists constant M > 1 that is independent of dimension p
such that ||x||cc < MT almost sure.

Theorem 2
Assume that Assumption 1 and Assumption 2 hold and the true parameter 6y satisfies ||0g|l2 <

r/3 and ||follo0 < So. Then there exist constants such C,Cy,Cy,Cs that are dependent
on (p(), Ly, 7%, 7,7, m) but independent on (0,sg,n,p, M) such that as n > Csglogp and

An = CoM 10% +0 0—810, the following hold with probability as least 7 :

(@) Any stationary points of problem (5) is in Bz (0o, no + g)\n Cs)
(b) As long as n is large enough such that n > Csqlog” p and the contamination ratio § is smaller

such that (o + 125 /S0AnC2) < 11, the problem (5) has a unique local stationary point which
is also the global minimizer.

Remarks:
When § = 0, wehaveny = 0and n; = C > 0. Thus, by setting A\,, = O(4/ loip), if sg = o(2),

log p
there is a unique stationary point of (5).

Illustration of our theoretical results

Based on our theorems, the two values ny = 1%501 and 77 = Cy — C30 > 0 are important.
For the penalized M-estimator for the high-dimensional case, we further define a constant r
and a cone A by
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To + 1 _ 5)\77,02 (6)
{00 + At |[Ase||r < 3[|Asy |1} (7)

rs =—

A =

Then we can illustrate our theoretical results by the following two figures.

AN

Figure 1: R,,(0) in Low-dimensional case Figure 2: L,,(9) in high-dimensional case

Simulation results

Settings:

x; ~ N(0,I,x,) and responses y; = (0y, x;) + €;, where ||fp||2 = 1.
€i ~ (1= 0)N(0,1) + 6N (|3 + 1,3%).

r=10,p = 10,n = 200

Loss: p,(t) = 1_eXp(;O‘t2/ 2) (Welsch'’s)

Algorithm: gradient descent with 20 random initial points.
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Figure 3: The convergence of gradient descent al- Figure 4: The estimation error for different o and
gorithm for different J. y-axis is with log scale. 0
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