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Response-Adaptive Randomization (RAR)

I RAR refers to sequential modification of treatment
randomization probabilities based on accumulating data in the
trial with the goal of assigning more patients to the better
treatment while maintaining important statistical properties of
the trial design1.

I Modern research on RAR has been on development of optimal
RAR designs for multi-arm and multi-objective clinical trials
(phase II and III).

I Optimal RAR designs=balance between individual ethics (do
the best for patients in the study) and collective ethics (do
the best for future patients).

1
Hu F., Rosenberger, W.F. (2006). The Theory of Response-Adaptive Randomization in Clinical Trials. Wiley.
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Motivation for RAR in Survival Trials

I Statistical: Censored heteroscedastic TTE outcomes ⇒
optimal allocation may be unbalanced across treatment arms.

I Ethical: Assign more patients to treatments that show benefit
and minimize exposure of patients to inefficient treatments.

I Logistical: More patients may wish to participate in adaptive
trials.
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Three Steps to Develop Optimal RAR Designs2

1. Derive an optimal allocation to satisfy selected experimental
objectives (e.g. minimize total expected hazard in the study
subject to appropriate constraints on power of the test).

2. Construct a RAR procedure with minimal variability and high
speed of convergence to the chosen optimal allocation.

3. Analyze clinical trial data following the chosen RAR procedure.

2
Hu, F. and Rosenberger, W. F. (2003). Optimality, variability, power: evaluating response-adaptive

randomization procedures for treatment comparisons. Journal of the American Statistical Association 98, 671–678.
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Optimal Allocation

I K ≥ 2 treatment arms and TTE primary outcomes.

I nk =sample size for treatment k, n =
∑K

k=1 nk .

I Event times follow a parametric distribution with p.d.f. f (t|θ)
and survivor function S(t) =

∫∞
t f (s|θ)ds.

I For the ith patient in group k , let
I Tik > 0 event time,
I Cik > 0 censoring time,
I tik = min(Tik ,Cik) observed time,
I δik = 1{Tik ≤ Cik} event indicator.

I The individual observations (tik , δik) are independent for
i = 1, . . . , nk and k = 1, . . . ,K .
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Likelihood and Fisher Information Matrix for θ

I Likelihood:

L(Data|θ) =
K∏

k=1

nk∏
i=1

{f (tik |θ)}δik{S(tik |θ)}1−δik .

I MLE of θ is found by solving the system of score equations

∂

∂θ
logL(Data|θ) = 0.

I The Fisher information matrix for θ is

M(θ) = −E

{
∂2

∂θ∂θT
logL(Data|θ)

}
,

whose inverse provides the lower bound on the variance of an
unbiased estimator of θ.
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Exponential Model

I Notations:
I θ = (θ1, . . . , θK )T: mean treatment survival times,
I εk = E(δik) = Pr(Tik ≤ Cik),
I ρk = proportion for group k (0 ≤ ρk ≤ 1 and

∑K
k=1 ρk = 1),

I ρ = (ρ1, . . . , ρK )T.

I Likelihood:

L(Data|θ) =
K∏

k=1

θ−∆k
k exp(−Tk/θk),

where ∆k =
∑nk

i=1 δik and Tk =
∑nk

i=1 tik .

I The Fisher information matrix for θ using design ρ is

M(ρ,θ) = n · diag

{
ρ1ε1

θ2
1

, . . . ,
ρKεK
θ2
K

}
.
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Optimization Problems3

I Let θc = ATθ = (θ2 − θ1, . . . , θK − θ1)T and Σn = var(θ̂c).

I DA-optimal design: maximize log(det{Σn}) s.t.
∑K

k=1 ρk = 1.

I Nonlinear programming optimal design:
minimize

∑K
k=1 wknk

subject to nk
/∑K

j=1 nj ≥ B,
∑K

k=1 nk = n,

and θcΣ−1
n θc ≥ η,

where w = (w1, . . . ,wK )T and B ∈ [0, 1/K ] are user-defined,
and η > 0 (optimal solution will not depend on η).

I w = (1, . . . , 1)T ⇒ max.power of Wald test for a sample size n.
I w = (θ−1

1 , . . . , θ−1
K )T ⇒ minimize mean total study hazard

subject to power constraints.
3

Sverdlov, O., Tymofyeyev, Y., Wong, W. K. (2011). Optimal response-adaptive randomized designs for
multi-armed survival trials. Statistics in Medicine 30, 2890–2910.
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Weibull Model

I Assume logTik = µk + bWik , Wik
i.i.d.∼ f (w) = ew exp(−ew ).

I θ = (µ1, . . . , µK , b)T.

I Likelihood:

L(Data|θ) =
K∏

k=1

nk∏
i=1

{b−1ezik exp (−ezik )}δik{exp (−ezik )}1−δik ,

where zik = (log tik − µk)/b.

I The Fisher information for θ is

M(ρ,θ) =
n

b2

(
diag{ρ1ε1, . . . , ρKεK} x

xT
∑K

k=1 ρk(εk + ck)

)
,

I x = (ρ1a1, . . . , ρKak)T,
I εk = Pr(δik = 1), ak = E (zikezik ), ck = E

(
z2
ikezik

)
,

I εk , ak and ck are functions of θ and the censoring mechanism.
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Optimization Problems for (K = 2)-arm Trials4,5

I Optimal4 allocation minimizing mean total hazard in the
study subject to a constraint on power.

I D-optimal5 allocation for most accurate estimation of
θ = (µ1, µ2, b)T.

I DA-optimal5 allocation for most accurate estimation of
∆ = µ2 − µ1.

I Hazard ratio-optimal5 allocation for most accurate estimation
of log(HR) = (µ2 − µ1)/b.

4
Zhang, L., Rosenberger, W. F. (2007). Response-adaptive randomization for survival trials: the parametric

approach. Applied Statistics 56, 153–165.
5

Sverdlov, O., Ryeznik, Y. and Wong, W. K. (2012). Doubly-adaptive biased coin designs for balancing
competing objectives in time-to-event trials. Statistics and Its Interface 5(4), 401–413.
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Optimization Problems for (K > 2)-arm Trials6

I D-optimal allocation: ρ∗ = arg minρ{− log(det{M(ρ,θ)})}.
I Compound optimal allocation:

I Let Φ1(ρ) and Φ2(ρ) be convex functionals for Objective 1
(D-optimality) and Objective 2 (hazard pattern estimation).

I For a user-defined α (0 ≤ α ≤ 1), solve:{
minimize αΦ1(ρ) + (1− α)Φ2(ρ)

subject to
∑K

k=1 ρk = 1.

I Weighted distance optimal allocation:
I Two objectives: inferential, implemented by ρI, and ethical,

implemented by ρE.
I λ(ρ, ρ̃) =distance metric between two probability vectors.
I For a user-defined α (0 ≤ α ≤ 1), determine

ρ∗ = arg min
ρ
{αλ(ρ,ρI) + (1− α)λ(ρ,ρE)}.

6
Sverdlov, O., Ryeznik, Y. and Wong, W. K. (2013). Efficient and ethical response-adaptive randomization

designs for multi-arm clinical trials with Weibull time-to-event outcomes. Journal of Biopharmaceutical Statistics,
accepted.
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Response-Adaptive Randomization

I Optimal allocation designs are functions of unknown θ and
cannot be implemented directly.

I One can estimate θ sequentially using accumulating data
from patients in the trial. This leads to the introduction of
RAR into the trial design.

I In survival trials outcomes are naturally delayed.

I RAR is applicable only when responses occur “not too far out”
in the accrual pattern.

I ≥ 60% of study patients should contribute data throughout
the recruitment phase for RAR to be meaningful.
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Doubly Adaptive Biased Coin Design (DBCD)7

I DBCD is a RAR procedure that can be used to target a
selected allocation ρ = (ρ1(θ), . . . , ρK (θ))T.

I Under widely satisfied conditions, DBCD has established
statistical properties:

I The MLE θ̂n is strongly consistent for θ and is asymptotically
normal.

I The vector of allocation proportions
Nn/n = (N1(n)/n, . . . ,NK (n)/n)T is strongly consistent for ρ
and is asymptotically normal.

I Therefore, DBCD has similar asymptotic properties to fixed
randomization designs, and standard asymptotic inference
procedures should apply.

7
Hu, F., Zhang, L. X. (2004). Asymptotic properties of doubly adaptive biased coin designs for

multitreatment clinical trials. The Annals of Statistics 32, 268–301.
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Practical Considerations

1. How frequently should randomization probabilities be
updated?

I Fully sequential procedure utilizes all available data; however
the study is completely unblinded.

I Two-stage design: At Stage 1 randomize Km0 patients equally
among K treatments; as Stage 2 randomize remaining
(n − Km0) patients using RAR based on data from Stage 1.

I Multi-stage design: Recalculate randomization probabilities
after cohorts of patients.

2. Which data should be looked at when recalculating
randomization probabilities at an interim analysis (IA)?

I Include data only from those patients whose outcomes have
been observed before the time of IA. Or

I Include data from all patients; some patients will be censored
by the time of IA.
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Extensive Simulation Studies: Summary
I Convergence to the target: Optimal RAR designs work as

intended when ≥ 60% of data are observed throughout the
recruitment stage.

I Allocation is generally skewed towards more variable arms with
longer survival times.

I RAR designs have higher variability of allocation proportions
than completely randomized design (CRD).

I Statistical characteristics: Both parametric (Wald) and
log-rank tests were studied.

I Simulated type I error rate is very close to the nominal; a 1%
inflation is observed in small and moderate samples (n = 150),
both for RAR and CRD.

I Optimal RAR designs have similar or higher (1%− 2% and up
to 4%) power compared to CRD.

I Ethical characteristics: RAR designs result in higher average
total survival time and have modest but consistent reductions
in the number of deaths compared to CRD.
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Example: Redesigning a Phase III Survival Trial8

I A randomized phase III clinical trial in patients with locally
advanced head and neck cancer treated with standard
fractionated RT alone (Treatment 1) or RT+cisplatin
(Treatment 2) or RT+carboplatin (Treatment 3).

I The reported intent-to-treat median overall survival times for
treatment groups 1, 2, and 3 are 12.2, 48.6, and 24.5 months.

I Assume Weibull event times and consider 3 choices of
θ = (µ1, µ2, µ3, b)T (Scenarios A, B, and C) to match the
reported treatment effects:

Hazard Ratio
Scenario µ1 µ2 µ3 b 2 vs. 1 3 vs. 1

A 2.81 4.20 3.51 0.85 0.20 0.44
B 2.87 4.25 3.57 1.00 0.25 0.50
C 2.96 4.34 3.66 1.25 0.33 0.57

8
Fountzilas, G., Ciuleanu, E., Dafni, U., et al. (2004). Concomitant radiochemotherapy vs radiotherapy alone

in patients with head and neck cancer. Medical Oncology 21(2), 95–107.
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Simulation Study Setup
I To match the reported trial, assume:

I Recruitment R = 55 months; study duration D = 96 months.
I Patient enrollment follows a Poisson process over (0,R).
I Patient drop-out time is Uniform(0,D); patients who are alive

and have not dropped out by the end of the study are
administratively censored.

I Target allocation ρ∗ = (ρ∗1, ρ
∗
2, ρ
∗
3)T

ρ∗k = 0.5ρIk + 0.5ρEk , k = 1, 2, 3,

where (ρI1, ρI2, ρI3)T is D-optimal and (ρE1, ρE2, ρE3)T is
“ethical” allocation:

ρEk =
{exp(µk/b)}2∑3
j=1{exp(µj/b)}2

, k = 1, 2, 3. (1)

I DBCD with two interim analyses (after n/3 and after 2n/3
patients) is used to target ρ∗. CRD is simulated as the
reference procedure.
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Simulation Study Results (10,000 simulation runs)

Scenario A (n = 66) Scenario B (n = 72) Scenario C (n = 123)

CRD RAR∗ CRD RAR† CRD RAR§

ρ1 0.335 (0.041) 0.281 (0.083) 0.334 (0.032) 0.264 (0.078) 0.334 (0.025) 0.265 (0.072)
ρ2 0.331 (0.041) 0.390 (0.117) 0.332 (0.032) 0.409 (0.099) 0.333 (0.026) 0.404 (0.080)
ρ3 0.334 (0.041) 0.330 (0.103) 0.334 (0.032) 0.328 (0.093) 0.333 (0.025) 0.331 (0.080)

M(D) 0.995 0.947 0.997 0.944 0.998 0.953
M(DA) 0.999 0.915 0.999 0.930 0.999 0.945
Power 0.916 0.917 0.903 0.901 0.883 0.881

TD (SD) 39 (4) 37 (4) 50 (4) 48 (5) 75 (5) 71 (6)
TH (SD) 305 (107) 281 (104) 283 (70) 258 (68) 295 (49) 274 (48)
TT (SD) 1331 (178) 1375 (153) 1797 (167) 1874 (185) 2757 (220) 2841 (241)
∗ Target allocation is (0.203, 0.551, 0.246).
† Target allocation is (0.211, 0.526, 0.262).
§ Target allocation is (0.224, 0.495, 0.281).
M(D), median D-efficiency; M(DA), median DA-efficiency;
TD, total number of deaths; TH, total hazard; TT, total time; SD, standard deviation.

I RAR generates skewed allocations favoring the arms with longer survival
times but it has more variable allocation proportions than CRD.

I Due to delayed responses, RAR does not completely attain its targets.

I RAR has ≥ 94% median D-efficiency, ≥ 92% median DA-efficiency, and
the same average power as CRD.

I RAR has 7% to 9% lower average total hazard, 2 to 4 fewer average

deaths and longer average total survival time than CRD. 19 / 36



Statistical Software9

I A user-friendly software interface RARtool was developed in
MATLAB, to facilitate the design of randomized comparative
clinical trials with time-to-event outcomes.

I It implements state-of-the-art RAR methodology from several
recently published papers.

I It can compute optimal allocation designs and values of
different statistical efficiency criteria for user-selected sets of
experimental parameters.

I It can perform Monte-Carlo simulations of RAR procedures
targeting selected optimal allocations under a variety of
scenarios.

I RARtool is intended to fill the gap between methodology and
implementation of optimal RAR designs in time-to-event trials.

9
Ryeznik, Y., Sverdlov, O., and Wong, W. K. (2013). RARtool—a MATLAB software package for designing

response-adaptive randomized clinical trials with time-to-event outcomes, submitted.
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Covariate-Adjusted Response-Adaptive (CARA)
Randomization

I CARA randomization is an extension of RAR: treatment
randomization probabilities are modified based on history of
previous patients’ treatment assignments, responses and
covariates, and the covariate vector of the current patient10.

I Two main reasons to consider CARA:

I Statistical: For nonlinear and heteroscedastic models, optimal
allocation may not be balanced across treatment arms.

I Ethical: The degree and direction of treatment effect may
differ for patient subgroups within a treatment ⇒ increase
probability of assigning the treatment that is most efficacious
given the patient’s covariate profile (personalized treatment).

10
Rosenberger, W. F. and Sverdlov, O. (2008). Handling covariates in the design of clinical trials. Statistical

Science 23(3), 404–419
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CARA Randomization for Survival Trials11

I n patients enroll sequentially and are randomized to A or B.

I For the ith patient, survival time Tik , conditional on
covariates zi is exponential with mean

λk(zi ) = exp(θT
kzi ), k = A,B,

where θk = (θk0, θk1, . . . , θkp)T and zi = (1, z1i , . . . , zpi )
T.

I Tik is subject to independent right-censoring with Ci > 0.
I tik = min(Tik ,Ci ),
I δik = 1{tik = Tik},
I (tik , δik) are independent, i = 1, . . . , nk , k = A,B,
I εk(zi ) = E (δik) = Pr(Tik ≤ Ci |θk , zi ).

11
Sverdlov O., Rosenberger W. F., and Ryeznik Y. (2013). Utility of covariate-adjusted response-adaptive

randomization in survival trials. Statistics in Biopharmaceutical Research 5(1), 38–53.
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CARA Randomization Designs

I Randomize initial 2m0 patients (m0 is small positive integer)
equally between A and B.

I Suppose m ≥ 2m0 patients have been randomized and
outcome data (from some of them) are available. Compute
(θ̂A,m, θ̂B,m), estimates of (θA,θB).

I The (m + 1)th patient with covariate vector zm+1 is
randomized to A with probability

φm+1 = g(θ̂A,m, θ̂B,m, zm+1),

where 0 ≤ g(·) ≤ 1 is an appropriately chosen allocation
function, skewed in favor of the “better” treatment arm.
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CARA Randomization Schematic

. . .
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Proposed Designs

1 CARA designs with targets:
I Derive an optimal allocation (OA) for a model without

covariates, and use a covariate-adjusted version of the OA as
the target.

I Use CARA DBCD procedure12 to sequentially allocate patients.

2 Weighted Optimality CARA designs:
I Treatment randomization probabilities for a patient are

obtained by maximizing a utility function that combines
“inferential” (D-optimality) and “ethical” criteria13.

I Pre-specified tradeoff parameter γ ∈ [0,∞) allows to achieve
balance between the objectives: γ = 0 is “maximum
information” design; γ →∞ is “most ethical” design.

12
Zhang, L-X. and Hu, F. (2009). A new family of covariate-adjusted response-adaptive designs and their

properties. Applied Mathematics—A Journal of Chinese Universities, 24 1–13.
13

Atkinson, A. C. and Biswas, A. (2005). Bayesian adaptive biased-coin designs for clinical trials with normal
responses. Biometrics, 61 118–125.
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Extensive Simulation Studies

I Ten competing designs were compared:
I 2 balanced randomization procedures (CRD and

Pocock-Simon’s method).
I 6 CARA randomization designs.
I 2 RAR designs (only main treatment effects are estimated in

the design).

I Operating characteristics:
I Allocation proportion NA(n)/n and its variability.
I Power and type I error.
I Relative efficiency in estimation.
I Total number of events in the trial.

I Both correctly specified exponential model and uniform
recruitment and various violations of these assumptions.
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Key Findings from Simulations

Allocation B Under H0 : θA = θB, all designs result in equal allocation.
proportion B Under Alternatives, CARA and RAR designs result in

skewed allocation to the better treatment.
B CARA and RAR are more variable than balanced designs.
B NA(n)/n is normally distributed (consistent with theory).

Type I error B For a range of sample sizes from 100 to 400, the type I error
and power for all designs ranges from 0.048 to 0.064.

B CARA, RAR, and balanced designs have very similar power.

Estimation B CARA and RAR designs are at least 96% as efficient
efficiency as balanced designs.

B All designs have consistent and normally distributed M.L.E’s.

Number of B CARA and RAR designs result in up to 3–6 fewer events
events (on average) compared to balanced designs.
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Robustness to Model Misspecification

I CARA designs are robust to misspecification of the
exponential model (e.g. when event times follow Weibull,
log-logistic, or log-normal distribution), provided that final
data are analyzed using the correctly specified model.

I If the final model is misspecified, estimates are biased, type I
error may be inflated and power may be lost; yet this is
common to both CARA and balanced randomization designs.

I Misspecification of the recruitment pattern (e.g. recruitment
times are not uniform) has little impact on statistical
properties of CARA designs.
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Example: Redesigning a Survival Trial

I Karapetis et al.14 reported the results of cetuximab trial in
advanced colorectal cancer.

I In a 21-month period, n = 572 eligible patients were
randomized at a 1 : 1 ratio among TRT A (cetuximab plus
best supportive care) and TRT B (best supportive care alone).

I The primary endpoint was overall survival (OS).

I Effectiveness of cetuximab was significantly associated with
K-ras mutation status:

I Patients with wild-type K-ras tumors benefited from cetuximab
(median OS, 9.5 vs. 4.8 months; HR for death, 0.55).

I Patients with a colorectal tumor bearing mutated K-ras did
not benefit from cetuximab (median OS, 4.6 vs. 4.5 months;
HR for death, 0.98).

14
Karapetis, C. S., Khambata-Ford, S., Jonker, D. J., et al. (2008). K-ras mutations and benefit from

cetuximab in advanced colorectal cancer. The New England Journal of Medicine, 359 1757–1765.
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Simulation Study Results (10,000 simulation runs)

n = 572 Pocock-Simon CARA RAR

NA/n (S.D.) 0.500 (0.002) 0.588 (0.037) 0.583 (0.039)
NA0|NB0 (S.D.) 169|169 (1) 211|127 (16) 197|141 (14)
NA1|NB1 (S.D.) 117|117 (1) 125|109 (13) 137|97 (11)
Deaths (S.D.) 372 (11) 362 (12) 366 (12)

Total Time (S.D.) 3076 (106) 3155 (113) 3132 (112)
θ̂A0 (S.D.) 2.62 (0.11) 2.62 (0.10) 2.62 (0.10)
θ̂A1 (S.D.) -0.68 (0.16) -0.68 (0.15) -0.68 (0.15)
θ̂B0 (S.D.) 1.87 (0.09) 1.86 (0.11) 1.87 (0.10)
θ̂B1 (S.D.) 0.02 (0.14) 0.03 (0.16) 0.02 (0.16)

I Because of treatment-covariate interaction, CARA resulted in greater
skewing to A in the wild-type K-ras subgroup than in the mutated K-ras
subgroup, whereas RAR had similar degree of skewing in the subgroups.

I CARA and RAR had, on average, 10 and 6 fewer deaths and greater total
survival time than the Pocock-Simon design.

I All three procedures had the same power and very similar M.L.E.’s.
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CARA Randomization: Conclusions

I CARA designs generate skewed allocations according to
covariate-specific treatment differences and can result in fewer
events in the trial, while having similar statistical properties
(type I error/power/estimation efficiency) to balanced
randomization designs.

I Exponential regression is a reasonable working model to
facilitate design adaptations. However, it is crucial that final
data are analyzed using correctly specified model.

I Delayed responses slow down convergence to target allocation
⇒ substantial amount of patient outcome data must be
observed during the recruitment phase.

I The number of covariates in the model at the design stage
must be limited (e.g. most predictive genetic biomarkers).
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Optimal Dose Finding in TTE trials

I Potential applications to medical studies in
I Virology (duration of viral shredding);
I Dentistry (time to onset and/or duration of anesthesia);
I Oncology (progression-free survival, overall survival).

I Assume a quadratic dose-response relationship:

logT = β0 + β1x + β2x
2 + bW ,

where x = log(Dose), W ∼ f (w) with support on (−∞,∞)
and S(w) =

∫∞
w f (u)du.

I f (w) = exp(w − ew ) ⇒ T ∼Weibull;
I f (w) = e−w (1 + e−w )−2 ⇒ T ∼ loglogistic;
I f (w) = 1√

2π
e−w

2/2) ⇒ T ∼ lognormal.

I Data structure: {(ti , δi , xi ), i = 1, . . . , n}, where
ti = min(Ti ,Ci ), δi = 1{Ti ≤ Ci} and xi = log(Dosei ).
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Likelihood and Fisher Information
I Likelihood:

L(Data|θ) =
n∏

i=1

{b−1f (wi )}δi{S(wi )}1−δi ,

where θ = (β0, β1, β2, b)T and wi = (log ti − βTxi )/b.

I Fisher information for θ at xi is

I(xi ,θ) =
1

b2

(
−E(Ai )xix

T
i −E(Aiwi )xi

−E(Aiwi )xT
i E(δi )− E (Aiw

2
i )xi

)
,

where Ai = δi
∂2log f (wi )

∂w2
i

2 + (1− δi )∂
2log S(wi )

∂w2
i

2 .

I Design: ξ = {(xi , ρi ), 0 ≤ ρi ≤ 1,
∑K

i=1 ρi = 1}.
I Full design information matrix:

M(ξ,θ) = n
K∑
i=1

ρi I(xi ,θ).
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Optimal Design Problems (Ongoing Work)

I Locally D-optimal design: ξD = arg minξ{− log |M(ξ,θ)|}.

I Locally c-optimal design: minimize variance of the MLE of
d = −β1/2β2.

I Bayesian D-optimal design:
ξ∗D = arg minξ{−

∫
log |M(ξ,θ)|g(θ)dθ}, where g(θ) is a

prior density of θ.

I Bayesian c-optimal design.

I Penalized D-optimal design15.

I If there is no censoring, then M(ξ,θ) does not depend on
(β0, β1, β2). With censoring, optimal designs have complex
structure and must be found using numerical optimization.

15
Dragalin, V. and Fedorov, V. (2006). Adaptive designs for dose-finding based on efficacy-toxicity response.

Journal of Statistical Planning and Inference 136 1800–1823.
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Adaptive Designs (Ongoing Work)

I Pilot design: Initial m patients are allocated to dose levels
according to a uniform allocation design.

I Given data Fm = {(x1, t1, δ1), . . . , (xm, tm, δm)}, obtain the
estimate θ̂m and ξm = ξ(θ̂m).

I Stepwise allocation of the remaining (n −m) patients is made
to maximize an appropriate sensitivity function.

I Points to be addressed:
I A comparison of optimal and adaptive designs with uniform

design in terms of statistical efficiency and ethical criteria.
I Robustness of the designs to misspecification of event time

distribution.
I Effect of delayed response and recruitment patterns on

statistical properties of adaptive designs.
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Thank You!

Questions?
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