
Web Appendix:

Robust Recovery of the Central Subspace for Regression

Using the Influence Function of the Rényi Divergence
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B Heuristic argument for robustness

Let Âαl
denote the estimated basis of SY |X for a fixed level of the tuning parameter, αl ∈ (0, 1).

The monotonicity property of Rα(A) discussed in Section 2.2, together with article-(4) and article-
(5), suggests that for any two values of the tuning parameter α1 and α2 such that α1 < α2,

R̂α1(Âα1) ≤ R̂α2(Âα2) ≤ D̂KL(Â1). Note that, DKL(A1) ≤ DKL(I) holds by Proposition 3 part
(ii) of Yin and Cook [10], and that the KL based method is fundamentally a likelihood procedure,

implying that Â1 would be asymptotically more efficient than Âαl
; however, Â1 is more sensitive

to the presence of extreme observations. This is discussed in the following heuristic argument to
illustrate why the estimator in article-(4) possesses robustness against data contamination.

For n fixed, let k
(
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)
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⊤xi)/{f̂(yi)f̂(A⊤xi)} and view R̂α(A) as a function of
α, then taking the limit using L’Hospital’s rule,
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This implies that for α close to 1

R̂α(A) ≈
n∑

i=1

ŵ(i,α) ln

{
f̂(yi,A

⊤xi)

f̂(yi)f̂(A⊤xi)

}
, (1)

which is a weighted version of the sample index D̂KL(A) of Yin and Cook [10], with weights
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Therefore, for values of α ∈ (0, 1), (1) naturally down-weighs any outlying observation, say

(yi∗ ,xi∗), since ŵ(i∗,α) < 1. However, at α = 1 the sample estimate is D̂KL(A) and thus, all
observations, including outliers, have weights ŵ(i,1) = 1. This implies that by selecting α close to
1, all weights approach 1, improving the asymptotic efficiency of the estimated coefficient matrix
Â. Therefore, R̂α(A) offers a compromise between efficiency and robustness, with the extent of
the concession controlled by the level of the tuning parameter α. For this reason, the selection of
an optimal value of α, and a more formal assessment of robustness, is necessary and is accomplish
through the study of influence functions.

C Simulation studies

C.1 Introduction

In this section, various regression models with differing levels of asymmetric contamination are
investigated to study the robustness of our method in estimating a basis for SY |X. For all sim-
ulations, the level of the tuning parameter is taken on the grid α ∈ {0.1, 0.2, . . . , 0.9}. Also, as
discussed in Section 2.6, all calculations are performed in the whitened scale and therefore, the
orthonormal constraints are assumed for both Â and A. However, for the ease in exposition the
notation Y and X is maintained, with the regression models described in the original scale and the
estimated coefficient matrix Â compared to the normed matrix Σ1/2A. Three different studies, for
a total of five simulations, are used to examine the performance our methodology in the presence
of outliers. In addition, the scale of the SIF values are not important and therefore, the results
are reported in the standardized scale (n− 1)−1SIF

(
ρ

BC
, F̂ ,wi

)
=

{
ρ

BC
(Â(i), Â)− 1

}
.

Two measures between the estimated and true coefficient matrices Â andA are used to quantify
the accuracy of the estimated basis of SY |X. The definitions of the matrix 2-norm and determinant,
and related results, are the same as those given in Section 4.1.

The first accuracy measure is an L2 norm distance between PS(A) and PS(Â), defined as

L2(D)

(
Â,A

)
=

∣∣∣∣ÂÂ⊤ −AA⊤∣∣∣∣
2
=

∣∣∣∣PS(A) − PS(Â)

∣∣∣∣
2
. (2)

Importantly, note that 0 ≤ L2(D) ≤ 2, since
∣∣∣∣PS(A) − PS(Â)

∣∣∣∣
2
≤

∣∣∣∣PS(A)

∣∣∣∣
2
+
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∣∣∣∣
2

=
∣∣∣∣PS(A)

∣∣∣∣
2
+
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∣∣∣∣
2
≤ 1 + 1 = 2.

The second measure of accuracy is the correlation between S(A) and S(Â) using the square
root of Hotelling’s [3] squared vector correlation coefficient,

ρ
HC

(
Â,A

)
=

√∣∣(A⊤A)−1AT Â(Â⊤Â)−1Â⊤A
∣∣ = √∣∣A⊤ÂÂ⊤A

∣∣ = ( d∏
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λi

) 1
2

. (3)

As in Section 4.2, the λi are the eigenvalues of A⊤ÂÂ⊤A, 0 ≤ ρ
HC

(
Â,A

)
≤ 1, ρ

HC

(
Â,A

)
= 1

implies that S(A)=S(Â), and ρ
HC

(
Â,A

)
= 0 when the subspaces are orthogonal.
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C.2 Simulation methodology and regression models

Uncontaminated error terms in the regression models are generated from a N(0, σ) distribution,
while asymmetric outlying observations are generated at random from a uniform distribution on
the interval (0, θ) with probability (1− π), π ∈ {.95, .90}. In the study descriptions below, this is
denoted as ε ∼ N(0, σ)I(π) + U(0, θ){1 − I(π)}, where I(π) = 1 with probability π and 0 with
probability (1− π).

The distributions of the predictor variables X = (X1, . . . , X10)
⊤ and model error terms of each

study are summarized as follows:

Study 1: X10 ∼ N(0, I); ε ∼ N(0, σ = 0.5)I(π) + U(0, 50){1 − I(π)}, π ∈
{.95, .90}.

Study 2: X1 ∼ t(25), X2, X3 ∼ t(5), X4, X5 ∼ N(0, 1), X6 ∼ Γ(4, 1), X7 ∼
N(0, 1), X8 ∼ χ2

(3), X9 ∼ Γ(3, 2), X10 ∼ N(0, 1); ε ∼ N(0, σ = .3)I(π) +
U(0, 20){1− I(π)}, π ∈ {.95, .90}.

Study 3: X1 ∼ Γ(4, 3), X2 ∼ t(15), X3 ∼ N(0, 1), X4 ∼ χ2
(3), X5 ∼ t(20),

X6 ∼ t(25), X7 ∼ N(0, 1), X8 ∼ Γ(10, 2), X9 ∼ χ2
(6), X10 ∼ N(0, 1); ε ∼

N(0, σ = .3)I(π) + U(0, 20){1− I(π)}, π ∈ {.95, .90}.
The regression models for each of the simulations for studies 1 - 3 are summarized in Table 1.

Simulation Model True Coefficient Matrices

Study 1

I Y = A⊤X+ ε A = (1, 2, 0, 0, 0, . . . , 0)⊤

II Y = A⊤X+ ε A = (1, 1, 1, 1, 0, . . . , 0)⊤

III Y = (A⊤X)2 + ε A = (1, 2, 3, 0, 0, . . . , 0)⊤

Study 2

I Y = a⊤1 X
(
a⊤2 X+ 1

)
+ ε A = [(1, 0, . . . , 0)⊤; (0, 1, 0, . . . , 0)⊤]

Study 3

I Y =
a⊤
1 X

0.5+
(
a⊤
2 X+1.5

)2 + ε A = [(1, 0, . . . , 0)⊤; (0, 1, 0, . . . , 0)⊤]

Table 1: Simulation regression models.

Note that, Study 3 considers a model that was used in Prendergast [6] to illustrate their
methods ability to detect influential observations using SIR, but not necessarily to examine the
robustness of the procedure. Different from their numerical study, the predictors are not all normal,
but complicated almost entirely with variables that follow a variety of skewed and heavy-tailed
distributions, which are then contaminated with errors from a U(0, 20) distribution. A randomly
selected simulated dataset from each of Studies 2 and 3 is plotted in Figure 1 to illustrate each
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type of regression relationship and importantly, the effects on these nonlinear associations due to
contamination.

For a dataset created according to the above specifications an estimate of the coefficient matrix
Â is calculated and compared to the true basis A using (2) and (3). This process is repeated
ns = 500 times and the overall accuracy in estimating A quantified by taking the averages L2(D) =
1
ns

∑ns

j=1 L2(D)(Â
j,A) and ρ

HC
= 1

ns

∑ns

j=1 ρHC
(Âj,A), where Âj is the estimated coefficient matrix

for the jth simulated dataset. Note that, for all simulations the standard errors of the means for
both measures are less than 10−1 and not reported in the tables for brevity.
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Figure 1: n = 200, π = .95. Data y versus A⊤x plots, Simulation I. Left panel: Study 2, y versus a⊤1 x(a
⊤
2 x+ 1).

Right panel: Study 3, y versus a⊤1 x/{0.5 + (a⊤2 x+ 1.5)2}.
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C.3 Results Simulation Study 1

For all simulations of Study 1, the accuracy results between the actual and estimated bases are
reported in Table 2 at each of the two levels of contamination, sample sizes n = 200, 300, and
for brevity, only three values of the tuning parameter α = 0.2, 0.5 and 0.8. Also, for succinctness
the results for n = 200 are discussed below, with n = 300 numerically illustrating the theoretical
consistency result in Section 2.5.

For the linear regression models in Simulations I and II, the mean correlations ρ
HC

between
the estimated and true basis A of SY |X are all larger than .98 for both contamination levels and
analogously, the mean L2(D) distances are smaller with lower contamination. Since the L2 distance
in (2) takes on values on the interval [0, 2], the L2(D) values show a more definitive change in value
moving from lower to higher levels of contamination and thus, can be viewed as a more sensitive
accuracy measure.

Next, a dataset of size n = 200 was selected from this simulation to illustrate the methods
discussed in Section 4. The SIF based AUCα values, α ∈ {0.1, 0.2, . . . , 0.9}, of Section 4.4 are
given in the plots in Figure 2 with the lowest area corresponding to α = 0.1 and thus, the level
of the tuning parameter that provides the most robust index. Next, Figure 3 shows that all the
structural dimension detection methods discussed in Section 4 correctly estimate the dimension
d̂ = 1, with the boxplots of the bootstrap 1 − ρ

HC
(Âb

k, Âk) values article-(13) and the |SIF|
values |s(i,k)|, k = 1, 2, . . . , 10, having the smallest centers with the least variability. However, in
addition to the capacity to estimate d, the SIF based methods can also be used to identify the
most robust level of α and thereby, provide a foundation for more comprehensive methods with
less computational effort.

The results in Table 2 for the linear relationship involving additional predictors, Simulation
II, and the quadratic functional association between the response and disproportionately weighted
predictor variables in Simulation III, are analogous and therefore, show that our method accurately
recovers both linear and nonlinear regression DR directions in the presence of high contamination.
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Figure 2: n = 200, π = .90, α = 0.1. AUCα values, α ∈ {0.1, 0.2, . . . , 0.9}. (Study 1 Simulation I).
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Figure 3: n = 200, π = .90, α = 0.1. Dimension boxplots k = 1, 2, . . . , 10. Top left panel: boxplots of bootstrap

ρ
BC∗ (Â

b
k, Âk) values. Top right panel: boxplots of bootstrap L2(O)(Â

b
k, Âk) values. Bottom left panel: boxplots of

1− ρ
HC

(Âb
k, Âk) values. Bottom right panel: boxplots of |SIF| values |s(i,k)|. (Study 1 Simulation I).

Study 1

Simulation I Simulation II Simulation III
α 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8
n = 200

π = .95
ρ
HC

.9965 .9967 .9965 .9958 .9957 .9952 .9978 .9986 .9989

L2(D) .0785 .0764 .0776 .0859 .0864 .0897 .0619 .0504 .0442

π = .90
ρ
HC

.9884 .9877 .9857 .9905 .9902 .9890 .9973 .9981 .9982

L2(D) .1420 .1459 .1563 .1309 .1325 .1397 .0703 .0593 .0550

n = 300
π = .95

ρ
HC

.9977 .9979 .9979 .9975 .9976 .9975 .9985 .9991 .9994

L2(D) .0648 .0618 .0616 .0674 .0655 .0668 .0495 .0380 .0321

π = .90
ρ
HC

.9929 .9928 .9924 .9905 .9902 .9890 .9985 .9990 .9992

L2(D) .1128 .1129 .1157 .1309 .1325 .1397 .0517 .0431 .0378

Table 2: Mean distance and correlations L2(D) and ρ
HC

. (Simulations I-III).
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C.4 Results Simulation Study 2

Since the true structural dimension is d = 2, both computational algorithms in Section 2.6 are
used, with a slight improvement in the accuracy between the actual and estimated bases using the
direct search method. The accuracy results using direct maximization for each level of the tuning
parameter α ∈ {0.1, 0.2, . . . , 0.9}, with sample size n = 300, are reported in Table 3 for brevity.

The mean correlations ρ
HC

in Table 3 are high for both contamination levels, increasing to the

highest values as α increases, with the mean L2(D) distances decreasing comparably, indicating
that our method accurately estimates a more robust basis for SY |X at higher levels of α.

For the successive search algorithm, the AUCα plots in top right panel of Figure 4 show that
the optimal level of the tuning parameter is also in the upper ranges, with α = 0.8 producing
the most robust index; the plot of the smoothed SIF values in the top left panel confirm this
optimal level of the tuning parameter. In addition, the boxplots in the bottom left panel of the
|SIF| values |s(i,k)|, k = 1, 2, 3, 4, clearly estimate the correct structural dimension d̂ = 2, with
nearly the same center and variability when k = 2 as the boxplot when k = 1, and a noticeable
increased difference compared to k ≥ 3. The bootstrap procedure of Section 4.2 using the L2

distance measure in article-(12) is not as obvious, with the boxplots in the bottom right panel
showing a more significant increase in both the center and variability from the dimensions k = 1 to
2, but together with the notable increase in the centers from k = 2 to 3, the estimated structural
dimension is again taken to be d̂ = 2. Importantly, the improved performance using the actual
SIF values comes with less computational effort.

Study 2 Simulation I

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 300
π = .95

ρ
HC

.9712 .9735 .9769 .9784 .9776 .9773 .9779 .9784 .9814

L2(D) .1945 .1870 .1798 .1728 .1733 .1716 .1695 .1677 .1599

π = .90
ρ
HC

.9635 .9653 .9660 .9680 .9680 .9702 .9727 .9708 .9747

L2(D) .2208 .2149 .2115 .2061 .2012 .1973 .1885 .1908 .1819

Table 3: Mean distance and correlations L2(D) and ρ
HC

. (Study 2 simulation I; direct search method).
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Figure 4: n = 300, π = .90, α = 0.8. Top left panel: smoothed SIF value plots. Top right panel: AUCα values,
α = 0.1, 0.2, . . . , 0.9. Bottom left panel: boxplots of |SIF| values |s(i,k)|, k = 1, 2, 3, 4. Bottom right panel: boxplots

of bootstrap L2(O)(Â
b
k, Âk) values, k = 1, 2, 3, 4. (Study 2 Simulation I; successive search method).
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C.5 Results Simulation Study 3

The accuracy results for each level of the tuning parameter α ∈ {0.1, 0.2, . . . , 0.9}, with sample
size n = 300, are reported in Table 4 and Table 5 for the direct and successive search methods,
respectively.

The mean correlations ρ
HC

in Table 4 are high for both contamination levels and analogously,

the L2(D) distances are small, indicating that our method accurately estimates a basis for SY |X.
For both contamination levels the lowest average distance values are consistently observed when
α ≥ 0.6, indicating that these values of the tuning parameter more often parameterized the most
robust index.

Next, for a selected dataset with π = 0.90, the AUCα plots using the successive search method
in the top right panel of Figure 5 show that the optimal α is in the middle ranges, between 0.4
and 0.6, with α = 0.4 slightly producing the most robust index. The plot of the smoothed SIF
values in the top left panel of Figure 5, and the discussion in Section 1.1 comparing the plots of
the SIF values in article-Figure 1 when α = 0.4 and α = .08, provide further evidence for choosing
α = 0.4 as the optimal level of the tuning parameter. In addition, the boxplots in the bottom left
panel of the |SIF| values |s(i,k)|, k = 1, 2, 3, 4, clearly estimate the correct structural dimension as

d̂ = 2, with nearly the same center and variability when k = 2 as the boxplot when k = 1, and
a noticeable increase when compared to k ≥ 3. The bootstrap procedure of Section 4.2 using the
L2 distance measure in article-(12) is not as obvious, with the boxplots showing a more significant
increase in both the center and variability from the dimensions k = 1 to 2, but together with the
notable increase in the centers from k = 2 to 3, the estimated structural dimension is again taken
to be d̂ = 2. Importantly, this study demonstrates the improved performance using the actual
SIF values and consequently, provide a more succinct method for dimension estimation and tuning
parameter selection.

Study 3 Simulation I

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 300
π = .95

ρ
HC

.9847 .9920 .9872 .9877 .9828 .9911 .9912 .9890 .9947

L2(D) .1061 .0984 .1013 .1009 .1057 .0961 .0958 .0974 .0922

π = .90
ρ
HC

.9799 .9836 .9915 .9905 .9864 .9918 .9886 .9886 .9846

L2(D) .1195 .1144 .1047 .1054 .1085 .1025 .1055 .1052 .1087

Table 4: Mean distance and correlations L2(D) and ρ
HC

. (Study 3 Simulation I; direct search algorithm).
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Figure 5: n = 300, π = .90, α = 0.4. Top left panel: smoothed SIF value plots. Top right panel: AUCα values,
α = 0.1, 0.2, . . . , 0.9. Bottom left panel: boxplots of |SIF| values |s(i,k)|, k = 1, 2, 3, 4. Bottom right panel: bootstrap

boxplots of L2(O)(Â
b
k, Âk) values, k = 1, 2, 3, 4. (Study 3 Simulation I; successive search algorithm).

Rα(A) Study 3 Simulation I

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 300
π = .95

ρ
HC

.9779 .9801 .9808 .9803 .9819 .9797 .9799 .9833 .9834

L2(D) .1856 .1791 .1761 .1759 .1704 .1726 .1710 .1630 .1628

π = .90
ρ
HC

.9774 .9781 .9762 .9782 .9789 .9786 .9808 .9794 .9809

L2(D) .1904 .1879 .1893 .1853 .1820 .1800 .1753 .1760 .1726

Table 5: Mean distance and absolute correlations L2(D) and ρ
HC

. (Study 3 Simulation I; successive search
algorithm).
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D Baseball salary data analysis

To illustrate the inherent robustness of our method, we analyze a well-studied dataset that was
initially given in a sponsored section on statistics and graphics of the American Statistical Associ-
ation in 1988, with the stated goal of answering the question; “are players paid according to their
performance?” Hoaglin and Velleman [2] wrote a review of the data analyses performed by the
fifteen groups that participated and specifically commented on the considerations taken by authors
in dealing with the known outliers and extreme observations present in the dataset. More recently,
Xia et al. [8] analyzed this dataset using their Minimum Average Variance Estimation (MAVE)
method for identifying the Effective Dimension Reduction (EDR) subspace in a dimension reduc-
tion setting. However, improving the results of their analysis involved first identifying outliers,
and then removing the observations deemed influential. Different from the previously mentioned
analyses for predicting annual salary from the predictors, our procedure to estimate regression DR
directions does not require a preliminary analysis to identify outliers, which is inherently difficult
in high dimensional settings. In addition, the directions can be used to create linear combinations
of the predictors to build predictive models for further analysis. Note that the following analysis
is performed in the whitened scale, but the notations X and Y are maintained for continuity.

The random vector for predicting annual salary, X = (X1, X2, . . . , X16)
⊤, consists of the vari-

ables: times at bat X1, hits X2, home runs X3, runs X4, runs batted in X5, walks X6, errors X7,
putouts X8, and assists X9, in the 1986 season. The remaining career predictor variables are the
number of: times at bat X10, hits X11, home runs X12, runs X13, runs batted in X14, walks X15,
and years in the major leagues X16, for the players career up to the 1986 season. The dependent
variable Y is the annual salary in 1986 in natural log scale.

The boxplots of the |SIF| values |s(i,k)|, k = 1, 2, 3, 4, for implementing the dimension detection
method described in Section 4.3 are displayed in the right panel of Figure 7, and clearly identify
the existence of one strong relationship between the response and explanatory vector, which is
analogously supported by the boxplots of the bootstrapped 1 − ρHC(Â

b
k, Âk) values detailed in

Section 4.2 in the left panel of the same figure. Arguably, both methods indicate that a meaningful
second regression direction exists, although weaker than the first direction, as demonstrated by the
boxplots having slightly higher means with more variability in comparison. The difference in the
strengths of these relationship is apparent in the smoothed scaled SIF value plots in the left and
right panels of Figure 8 for k = 1 and 2, respectively. However, taken together with the nonlinear
relationship visible in the variate plot of the observed response y versus the variate â⊤

2 x in the

middle panel of Figure 6, the estimated dimension of SY |X is taken to be d̂ = 2; using the second
regression direction further ensures no loss of information between the response and predictors.
The step function nature of the SIF value plots in Figure 8 for k = 1 indicates that about 50 of
the n = 263 observations are the most influential.

Consider the loadings for the 1st coefficient vector, or regression dimension reduction direction,
â1 given in Table 6. The variables hits in the 1986 season X2 and the career number of times at bat
X10 are given the most significant positive weights of .761 and .958, respectively. The next largest,
but significantly less, weight of .101 is placed on the predictor X4 runs in the 1986 season, which is
naturally positively associated withX2 andX10. The remaining variables are given even less weight
and thus, conclude that the 1st estimated loadings of the predictor vector X are overwhelmingly a
weighted average of X2 and X10. The plot of y versus â⊤

1 x in the left panel of Figure 6 indicates
that a strong nonlinear relationship with a quadratic trend is recovered. Specifically, the annual
salary is lowest when the variate is less than -1 and then increases sharply in a tight linear manner
as the variate approaches 0, which likely corresponds to players progressing from the start to the
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middle of their careers when their total number of times at bat are of more moderate values. This
linear trend remains for variate values between 0 and 1, with much more variation, and then trends
downward as the variate increases past 2, creating an overall quadratic trend for variate values
exceeding 1. The higher values between 0 and 2 are likely players who have been in the league for
a longer time, which seems reasonable as these players would be expected to have larger observed
career number of times at bat; anticipated with the increased number of times at bat are larger
differences in the number of hits in the 1986 season, which would explain the increased variability.
The downward trend for variate values greater than 2 is likely attributed to players at the end
of their careers, which has been previously explained as an aging effect; likely reflected here in a
more significant reduction in hitting in the 1986 season and consequently, fewer runs.

For the 2nd coefficient vector, the loadings in table 6 show that the largest weights, from -.594.
to -.524, are given to the variables X11, X13 and X14; the career totals for number of hits, runs, and
runs batted in. Note that, the career homeruns X12 is strongly associated with theses variables,
which is reflected in the lower weight of -.185. There is arguably a weak contrast between these
predictors and X16 number of years in the league, X2 hits and X4 runs in the 1986 season, with
weights .125, .154 and .208, respectively. However, the coefficients predominately load on career
batting statistics, and since career runs and runs batted in are a function of the career number of
hits, this can be viewed as a career batting coefficient vector. The variates plots in the middle panel
of Figure 6 again reveal an overall nonlinear relationship between the batting variates â⊤

2 x and
the annual salary. When the value of the variate is between -.5 to 1 there is a strong increasing
linear relationship with annual salaries less than 0, which likely corresponds to players in the
beginning of their careers and thus, lower career batting totals. This increasing linear trend in
annual salaries continues for variate values greater than 0, which can be generally attributed to
players in the beginning of their career who have lower total career batting totals but high season
batting statistics and thus, players who are expected to have high career batting totals by the end
of their careers. The highest salaries are generally observed for variate values less than -1, which
creates the observed quadratic trend, and corresponds to players with higher career batting totals.

The 1st variate plot in Figure 6 displays a similar nonlinear trend to the analogous graph based
on the estimated EDR direction in Figure 6 of Xia et al. [8], after the removal of seven observations
that were deemed outliers. However, there are some distinct differences between the loadings of
the regression DR directions. The greatest positive weights for the EDR direction are placed on
the career variables, number of years in the majors, times at bat, hits, and walks, with values
.52, .55, .37 and .30, respectively, However, the Rényi divergence based direction puts the largest
weight of .958 on the career number of times at bat X10, which can viewed as a summary of the
EDR weights, since, for example, players with an observed large number of at bats would also be
expected to have a higher amount of hits, more at bats, more walks and been in the major leagues
longer. Interestingly, the next EDR weights in this coefficient vector provide a contrast between the
number of times at bat and hits in the 1986 season, with values -.25 and .24, where as, the Rényi
divergence based directions puts the last significant large weight of .761 on the number of hits in
1986 X2. Therefore, using our method the 1st calculated direction provides a more parsimonious
and thus, more interpretable coefficient vector without the need for the identification and exclusion
of extreme observations. As in Xia et al. [8], after determining the two variates, â⊤

1 x and â⊤
2 x, we

fit a linear model using the two variates as predictors with stepwise linear regression producing the
fitted model ŷ = 0.42672+0.96824(â⊤

1 x)−0.228(â⊤
2 x)− .42835(â⊤

1 x)
2. Note that, Xia et al. [8] also

reported an r2 value of 0.714 for their model fitted using the EDR directions. In comparison, the
adjusted r2 for our model is 0.767. Therefore, our method is shown to effectively mitigate the effect
of the well established outlying observations present in this dataset without their identification and

12



removal.

Hitter Data Analysis – R0.1(A)
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

â1 .041 .761 .008 .101 .046 .090 -.046 .035 -.006 .958 .032 .064 -.019 .048 .095 .091
â2 -.093 .125 -.010 .154 .046 -.021 -.021 .005 .001 -.013 -.575 -.185 -.424 -.594 .095 .208

Table 6: Table of estimated coefficient vector loadings (Example Baseball salary).
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Figure 6: Right panel: â⊤1 x vs. y, α = 0.1. Middle panel: â⊤2 x vs. y, α = 0.1. Right panel: AUCα values,
dimension k = 1, α = 0.1, 0.2, . . . , 0.9

13



1 2 3 4

Hotelling

0

0.25

0.5

0.75

1

1 2 3 4

SIF

0

0.25

0.5

0.75

1

Figure 7: Boxplots, α = 0.1, dimension k = 1, 2, 3, 4. Left Panel: Bootstrap 1−ρ
HC

(
Âb
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E Additional Simulation Study 4

E.1 Introduction

For this comparative study, we consider the same distribution and covariance structure of the
predictors, error term, symmetric outliers generated from a uniform distribution, and follow their
simulation parameters, including using their measure for quantifying the accuracy of the estimated
basis of SY |X, for the regression model in Study 3. The changes in the simulation design are detailed
next.

The accuracy between the true and estimated subspaces is measured using the trace correlation

coefficient of Hooper [4], defined as

ρTR

(
Â,A

)
=

√
trace

{
(A⊤A)−1AT Â(Â⊤Â)−1Â⊤A

}
/d =

√
trace

{
A⊤ÂÂ⊤A

}
/d =

(
1

d

d∑
i=1

λi

) 1
2

. (4)

As in Section 4.2, the λi are the eigenvalues of A⊤ÂÂ⊤A, 0 ≤ ρ
TR

(
Â,A

)
≤ 1, ρ

TR

(
Â,A

)
= 1

implies that S(A)=S(Â), and ρ
HC

(
Â,A

)
= 0 when the subspaces are orthogonal. Note that, 0 ≤

λi ≤ 1 (Ye and Weiss [9]), which for d > 1 implies that ρ
TR

(
Â,A

)
≥ ρ

HC

(
Â,A

)
since

∏d
i=1 λi ≤∏d

i=1 λ
1
d
i =

(∏d
i=1 λi

) 1
d ≤ 1

d

∑d
i=1 λi, where the last inequality follows from the arithmetic-geometric

mean inequality.
Uncontaminated error terms in the regression model are generated from a N(0, 1) distribution,

and symmetric outlying observations produced at random from a U(−θ, θ) distribution with prob-
ability π = .95. Importantly, Zhang et al. [12] defined the error term in the regression model as
0.5ε∗, where ε∗ ∼ U(−θ, θ), which would be equivalent to generating a contaminated error term
from a U

(
− 0.5θ, 0.5θ

)
distribution in our previous simulation setup. As in Sections C.2, this is

denoted ε∗ ∼ N(0, 1)I(π) + U(−θ, θ){1− I(π)}, where I(π) = 1 with probability π.
Different from Simulation Study 3 in Section C.5, where the predictor vector is composed

almost entirely of variables that follow a variety of skewed and heavy-tailed distributions, the
explanatory vector is multivariate normal with a Toeplitz matrix covariance dependence structure.
The distribution of the predictor vector and model error terms are summarized as:

Study 4: X = (X1, X2, . . . , X10)
⊤ ∼ N10(0,Σ), where the (i, j)th term of Σ is

σij = 0.5|i−j|; ε∗ ∼ N(0, 1)I(π) + U(−θ, θ){1− I(π)}, π = .95.

The regression model with the newly defined error term and true coefficient matrix are given in
Table 7.

Study 4 Model True Coefficient Matrices

Y =
a⊤
1 X

0.5+
(
a⊤
2 X+1.5

)2 + 0.5ε∗ A = [(1, 0, . . . , 0)⊤; (0, 1, 0, . . . , 0)⊤]

Table 7: Simulation regression model simulation Study 4.

Two simulation studies are performed to investigate the effect of symmetric contamination on
the Rényi based method. Simulation I is the comparative simulation with Zhang et al. [12], where
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ε∗ ∼ U(−50, 50). In Simulation II, we increase the magnitude of contamination in Simulation II
by setting θ = 100 and thus, ε∗ ∼ U(−100, 100).

For a dataset generated under the above specifications, Â is calculated and the difference
between the true coefficient matrix A is quantified using (4). For datasets of size n = 100, 200, 300
and 400, this process is repeated ns = 200 times and the overall accuracy in estimating A is
measured by ρ

TR
= 1

ns

∑ns

j=1 ρHC
(Âj,A), where Âj is the estimated coefficient matrix for the jth

simulated dataset; note that, Zhang et al. [12] did not include n = 300 in their simulation study.
To visualize the effect of the symmetric contamination in comparison to the previously inves-

tigated asymmetric outliers, a randomly selected simulated dataset of size n = 300 is plotted in
the left panel of Figure 9, with the asymmetric contamination plot of Section C.1 Study 3 repro-
duced in the right panel. Note that, in terms of the currently defined error term, this would be
equivalent to ε∗ ∼ U(0, 40), and that the magnitude of the effect of the asymmetric outliers on the
response in the positive direction is comparable. In the direct comparison numerical study to that
Zhang et al. [12], Simulation I, the Rényi divergence based method has a discernible higher mean
trace correlation for all sample sizes in the presence of asymmetric contamination; see Section E.2.
However, the effect of asymmetric contamination, as shown in the right panel of Figure 9, was not
addressed in their paper. Note that, for both simulations the standard errors of the means are less
than 10−2 and not reported in the tables of the results in Section E.2 for brevity .
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Figure 9: Symmetric vs. Asymmetric Outliers Study 3 and Study 4 Simulation II {ε∗ ∼ U(−100, 100)}, π = .95,
example data plot y versus a⊤1 x/{0.5 + (a⊤2 x + 1.5)2}. Left panel: Study 4 (symmetric) n = 300. Right panel:
Study 3 (asymmetric) n = 200.

E.2 Results Simulations I and II

The mean trace correlations ρ
TR

for Simulations I and II at each sample size are reported in Table
8. For both simulations the most robust levels of the tuning parameter are attained on average
for smaller values of tuning parameter, between 0.1 and 0.5, with a more noticeable separation in
Simulation II when the contaminated error terms are generated from a U(−100, 100). In general,
the values of α = 0.1 and 0.2 provide the highest mean trace correlations. In contrast, the most
robust levels of α in the asymmetric outlier simulation in study 3 were typically from α = .4 to
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α = .6, which demonstrates that the range of the tuning parameters are capable of handling both
symmetric and asymmetric outliers.

In Simulation I with ε∗ ∼ U(−50, 50), the mean trace correlation values are notably higher
using the Rényi divergence based method, with values .8646, .9849 and .9904, compared to the
best results reported in Table 1 in Zhang et. al [12] corresponding to their L0 penalty based
method, with values .7869, .9055 and .9685, at the comparable sample sizes n = 100, 200 and 400,
respectively. Moreover, the Rényi based mean trace correlations, when α = 0.1 for example, remain
comparable to the values of Zhang et al. [12] (ε∗ ∼ U(−50, 50)) when the contamination is doubled
to ε∗ ∼ U(−100, 100) in Simulation II. Importantly, this simulation study demonstrates the ability
of our method to reliably estimate SY |X in the presence of both collinearity and symmetric outliers.

Study 4 Mean Trace Correlations ρ
TR

Simulation I: ε∗ ∼ U(−50, 50) , π = .95

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n

100 .8646 .8613 .8549 .8561 .8515 .8441 .8446 .8291 .8204
200 .9662 .9658 .9639 .9630 .9594 .9494 .9446 .9337 .9202
300 .9849 .9850 .9850 .9845 .9842 .9836 .9808 .9790 .9740
400 .9904 .9906 .9906 .9907 .9905 .9902 .9890 .9880 .9869

Simulation II: ε∗ ∼ U(−100, 100) , π = .95

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n

100 .7782 .7687 .7719 .7651 .7621 .7501 .7442 .7340 .7195
200 .8851 .8826 .8798 .8708 .8593 .8452 .8331 .8126 .7893
300 .9416 .9400 .9336 .9272 .9194 .9064 .8895 .8676 .8411
400 .9684 .9659 .9648 .9628 .9550 .9462 .9371 .9189 .9021

Table 8: Mean trace correlations ρ
TR

. (Study 4 simulations I and II; direct search method).
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